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Robust clustering of data into linear subspaces is a frequently encountered problem. Here, we treat clustering of one-dimensional
subspaces that cross the origin. This problem arises in blind source separation, where the subspaces correspond directly to columns
of a mixing matrix. We propose the LOST algorithm, which identifies such subspaces using a procedure similar in spirit to EM.
This line finding procedure combined with a transformation into a sparse domain and an L1-norm minimisation constitutes a
blind source separation algorithm for the separation of instantaneous mixtures with an arbitrary number of mixtures and sources.
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mixtures, and empirically estimate the performance of the algorithm in the presence of noise. Furthermore, we implement a simple
scheme whereby the number of sources present in the mixtures can be detected automatically.
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1. INTRODUCTION

When presented with a set of observations from sensors such
as microphones, the process of extracting the underlying
sources is called source separation. Doing so without strong
additional information about the individual sources, or
constraints on the mixing process, is called blind source
separation (BSS). Here, we consider instantaneous mixing,
where the sources arrive instantly at the sensors with
differing amplitude, which is described as follows. A set of
T observations of M sensors, X = [x(1)| · · · |x(T)], consist
of a linear mixture of N source signals, S = [s(1)| · · · |s(T)],
by way of an unknown linear mixing process characterised
by an M ×N mixing matrix A,

x(t) = As(t), (1)

where x(t) = [x1(t) · · · xM(t)]T and s(t) = [s1(t) · · · sN (t)]T

are time-indexed vectors that contain observations and
sources, respectively. When M = N , the underlying sources,
S, can be separated if one can find an unmixing matrix W
such that ŝ(t) = Wx(t), where ŝ(t) holds the estimated
sources at time t, and W = A−1 up to permutation and

scaling of the rows. This problem can also be described in
probabilistic terms:

P(s) = P
(

s1, . . . , sN
) =

N
∏

i=1

P
(

si
)

, (2)

where the sources are assumed to be mutually independent,
and BSS is achieved after factoring each source’s probability
density function, P(si).

Many source separation algorithms are based on the
premise that the sources are independent and identically
distributed, for example, independent component analysis
(ICA) [1], and achieve separation by making an assumption
about the nature of the sources’ probability densities. One
increasingly popular and powerful assumption is that the
sources have a parsimonious representation in a given basis.
This assumption has come to be known as the sparseness
assumption. A signal is said to be sparse when it is zero,
or nearly zero, more than might be expected from its
variance. Such a signal has a probability density function or
distribution of values with a sharp peak at zero and fat tails.
This shape can be contrasted with a Gaussian distribution,
which has a smaller peak and tails that taper quite rapidly
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Figure 1: A plot of the probability densities of a selection of
probability distributions. Solid line: Laplacian distribution; dashed
line: Gaussian distribution; dotted line: sub-Gaussian distribution.

(see Figure 1). A standard sparse distribution is the Laplacian
distribution,

P(c) = 1√
2
e−
√

2|c|, (3)

which has led to the sparseness assumption being sometimes
referred to as a Laplacian prior.

The sparseness of a distribution can be measured by
a variety of methods, such as those based on hyperbolic
tangent functions [2] and the Gini index [3, 4]. However,
the most commonly used measure for unimodal symmetric
sparse distributions is kurtosis, which is the degree of
peakedness of a distribution:

kurt(c) =
〈

(c − μ)4〉

σ4
− 3, (4)

where μ is the mean and σ is the standard deviation. A ran-
dom variable, c, drawn from a super-Gaussian distribution
such as the Laplacian has a kurt(c) > 0.

In most situations, a signal of interest will exhibit an
inherent structure that defines the underlying components
that compose the signal. Without structure a signal is
random and of little interest. Typically, structure is not
immediately evident from the data and is discovered by
identifying an appropriate generative model that describes
the structure, then fitting this model to the data by way of
a learning algorithm. In the case of BSS, the problem has a
dual geometric interpretation, where separation of sources
in an audio mixture is equivalent to the separation of linear
subspaces in a mixture of oriented lines. Taking a simple
example where there are three sources and two mixtures, the
generative model takes the form

[

x1(t)
x2(t)

]

=
[

a11 a12 a13

a21 a22 a23

]

⎡

⎢

⎣

s1(t)
s2(t)
s3(t)

⎤

⎥

⎦ , (5)

which can be described as a linear mixture of N linear
subspaces in M-space. From (5), it is evident that if only one
source is active, say s1, then the resultant mixtures would be

[

x1(t)
x2(t)

]

=
[

a11

a21

]

s1(t), (6)

therefore the points on the scatter plot of x1(t) versus x2(t)
would lie on the line through the origin whose direction
is given by the vector [a11 a21]T . When the sources are
sparse, the probability of multiple sources being nonzero
simultaneously is low, which indicates that this scenario
occurs frequently. Consequently, a scatter plot of coefficients
reveals a mixture of lines, with the lines broadened due
to noise and occasional simultaneous activity. These line
orientations correspond to the columns of A. Therefore,
the essence of the sparse approach is the identification
of line orientation vectors from the observed data [5]. In
contrast, traditional nonsparse approaches [6–9] exploit the
statistics of the sources as opposed to the structure of the
mixtures. Moreover, sparseness may be used to perform
source separation in the case when there are more sources
than mixtures [10], that is, the under-determined case. For
speech, a sparse representation can often be achieved by a
transformation into a suitable domain such as the short-time
Fourier transform (STFT) domain (see Figure 2). However,
even though X and S are complex in the STFT domain,
the elements of A and W remain real valued, as the form
of each depends on the mixing assumption, which remains
instantaneous mixing.

We propose the line orientation separation technique
(LOST), which separates an arbitrary number of sources
from an arbitrary number of mixtures by identifying lines
in a scatter plot, consequently factorising a mixture of
multivariate Laplacian densities. The orientation of each
line is estimated using a procedure that is similar in spirit
to Expectation-Maximisation (EM), and for the under-
determined case sources are estimated using L1-norm
minimisation. We presented an early incarnation of our
algorithm in [11]. Here, we present a number of extensions
including automatic detection of the number of sources in
the mixtures, and improved line estimation through scaling
of transform coefficients. Furthermore, we present a more
detailed investigation of the algorithm’s separation perfor-
mance, and provide a freely available C code implementation
of the algorithm.

This paper is organised as follows. In Section 2, we
discuss the identification of overlapping linear subspaces in
a scatter plot and present the LOST algorithm. Additionally,
we implement a simple scheme whereby the LOST algorithm
can automatically detect the number of sources in the
mixtures. In Section 3, we investigate the general separation
performance of the algorithm, and provide an empirical
assessment of the algorithms robustness to noise. Further-
more, we investigate the performance of the algorithm when
automatically detecting the number of sources, and compare
the performance of the LOST algorithm to that of the geoICA
[12] algorithm. We complete the paper with a discussion in
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Figure 2: Scatter plot of two linear mixtures of three zero-mean speech sources, in both the time domain, (a) x1(t) versus x2(t), and the
transform domain, (b) real(x1(ω)) versus real(x2(ω)). The sparse transform domain consists of the real coefficients of a 512-point windowed
STFT. Each of the figures’ axes is measured in arbitrary units of mixture coefficients.

Section 4, and conclusion in Section 5. Details of the sources
used in our experiments are presented in the appendix.

2. ORIENTED LINES SEPARATION

It can be seen from the scatter plot of Figure 2 that
the columns of A, which represent the sources, manifest
linear subspaces that cross the origin in a sparse domain.
Furthermore, it is evident that the points in each linear
subspace are drawn from a distribution that is concentrated
around the line. Such a distribution resembles a multivariate
Laplacian density that is centred along the line. Since there
are N sources, si, . . . , sN , each characterised by a different
Laplacian density, the observations x(t) are generated by a
linear combination of these Laplacian densities; such a model
is commonly known as a Mixture of Laplacians (MoL) or a
Laplacian mixture model (LMM). By fitting an LMM to the
observed density P(x), the linear subspaces are identified by
the Laplacian density centres.

2.1. Mixture of multivariate Laplacians

We propose the following mixture of multivariate Laplacians
as a generative model for BSS. The Laplacian density may be
expressed by

L(v|β, x) = βe−2β|x−v| ∝ e−β|x−v|, (7)

where v represents the centre of the Laplacian and β controls
the boundary of the density. For our purposes, we use
multivariate densities, where the centre of the Laplacian, v,
(which is normalised ‖v‖ = 1) and the observation x(t) are
vectors that represent lines that cross the origin. We require
a metric that measures the distance between such lines; an

appropriate measure is achieved by calculating the difference
between x(t) and the projection of x(t) onto v:

qit =
∥

∥x(t)− (vi·x(t)
)

vi
∥

∥, (8)

where · denotes the dot product of the Euclidean space.
When the Laplacian centre and observation are coincident,
qit is at its minimum. We characterised each linear subspace
by the following distribution [11]:

L
(

qit,β
) = e−βqit , (9)

and define a mixture of multivariate Laplacians as

P
(

x(t)
) =

N
∑

i

L
(

qit,β
) =

N
∑

i

e−βqit , (10)

where speech is assumed to be identically and independently
distributed, and β is assumed to be the same for each
distribution.

2.2. Line orientation estimation

Here, we describe the procedure used to estimate the param-
eters of the specified mixture of multivariate Laplacians [11].
Since there are N lines, each with a different orientation
vector vi, the observations are segregated into sets associated
with each line. Segregation is achieved by estimating the
probability of an observation belonging to a line:

q̃it = P
(

x(t)|vi
) = e−βqit

∑

i′ e−βqi′ t
, (11)

where q̃it indicates the membership of the observation
x(t) to the line vi. Calculating the probability of x(t)
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for all vi represents a partial or soft assignment of the
observation to each line. The data set associated with
each line can be calculated using the observations, X, and
their soft assignments q̃it, for all i, t. Alternatively, a hard
assignment may be used, which corresponds to winner-takes-
all assignment, where each observation is assigned to just
one line [13]. Furthermore, the algorithm obtained from a
hard assignment is a k-means clustering algorithm. Typically,
k-means performs vector quantisation, while EM performs
density estimation—which fits better with our mixture of
multivariate Laplacians model. However, both approaches
give similar clusters. Although, in general, k-means will
consistently find densities with less overlap than EM [14] and
makes a strict sparseness assumption where only one source
is expected to be active at any time.

For density mixture models, it is common that each
density has a separate β specific to that density. Although, for
our algorithm, which utilises a multivariate density model,
where Laplacian densities are centred along lines that cross
the origin, individual β parameters are not possible as they
may grow at different rates, over-weighting points close
to the origin, that do not belong to the line, potentially
squeezing out lines. However, this is not a problem, as
it is reasonable to assume that speech is identically and
independently distributed, which makes β the same for each
distribution.

The orientation of a linear subspace can be thought of
as the direction of its greatest variance. One method that
can be used to determine the variance of a data set, and its
direction, is principal component analysis (PCA) [15]. PCA
is a dimensionality reduction technique that represents a
data set by the variance of the data in orthogonal directions.
The principal component with the largest variance, λmax,
which corresponds to the principal eigenvector, umax, of the
covariance matrix for the weighted observations

Σi = UiΛiU−1
i (12)

identifies the centre of the line [11]

vi = umax, (13)

where the columns of the matrix Ui contain the eigenvectors
of Σi, and the diagonal matrix Λi contains its associated
eigenvalues λi, . . . , λM . However, contrary to our mixture
model (10), PCA employs a Gaussian noise model and
therefore does not provide a true maximum likelihood
estimate of the line, under the Laplacian assumption.
Although, PCA may be considered to be the best unbiased
linear estimator (BLUE), where the principal eigenvector
approaches the maximum likelihood estimate of the line,
under the Laplacian assumption, as the number of samples
approaches infinity. A similar approach to cluster centre re-
estimation using singular-value decomposition is presented
in [16], while an alternative approach that fits a straight line
to the data points in a linear subspace is presented in [17].

The density boundary parameter β controls the spread of
the densities centred on each line. It is obvious from Figure 2
that such a spread may be represented by the variance of
the linear subspace that is orthogonal to the line, that is, the

second largest eigenvalue of Λi. We estimate the value of β
using a scheme that creates a set of second largest eigenvalues
for all Σi, and update β to the reciprocal of the largest value
in this set, β ← 1/max(λ1, . . . , λN ).

The procedure of soft assignment and line centre repo-
sitioning using PCA is repeated until viconverge, at which
point ̂A is constructed by adjoining the estimated line
orientations to form the columns of the matrix

̂A = [v1| · · · |vN
]

. (14)

Such a procedure resembles an Expectation-Maximisation
(EM) algorithm [18]—or more correctly a pseudo-EM
algorithm—which finds maximum likelihood estimates
of parameters in probabilistic models, where the model
depends on unobserved latent variables. The EM algorithm
alternates between an expectation (E-)step, which calculates
an expectation of the latent variables, and a maximisa-
tion (M-)step, which calculates the maximum likelihood
estimates of the parameters by maximising the expected
likelihood found on the E-step. The parameters found on the
M-step are then used to begin another E-step, and the process
is repeated.

In our case, the E-step calculates posterior probabilities
assigning observations to lines and the M-step repositions
the lines to match the points assigned to them. This pseudo-
EM procedure comprises the line estimation stage of the
LOST algorithm, and is illustrated in Figure 3.

Alternatively, the line estimation stage of the LOST
algorithm can be thought of as a piecewise linear operation,
where observations are soft assigned to lines, and PCA is
performed for the data partially assigned to each line.

2.3. Sparse transformation

In order for the linear subspaces in the scatter plot to be well
defined, an appropriate sparse transformation is required.
For the LOST algorithm, we exploit the sparseness of speech
in the short-time Fourier transform domain, which results
in well-defined lines (see Figure 4). However, it is evident
that some observations are perturbed by noise, broadening
the lines. It is necessary that the lines are as well defined as
possible, as the line estimation stage of the LOST algorithm
is dependent on the quality of the sparse representation.

The broadening of the lines may be reduced by con-
trolling the effects of the perturbing noise, which may be
achieved by segregating the STFT coefficients into different
classes based on some notion of noise level. Here, we propose
such an approach, where we examine the levels of noise
present in each frequency bin over all STFT frames. Since
speech is sparse in the STFT domain, we can assume that
frequency bins that have a distribution of coefficients that
reflect a Gaussian are mostly noise, while frequency bins
that exhibit a Laplacian distribution contribute mostly to
the definition of the lines; the distinguishing feature between
the two distributions is their peakedness. We measure the
peakedness of the distribution of coefficients for each bin
using kurtosis, kurt(ck) = 〈(ck − μ)4〉/σ4 − 3, where ck is the
distribution of coefficients for the kth frequency bin. Each
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Figure 3: Illustration of the LOST algorithm’s line estimation procedure. The E-step calculates posterior probabilities partially assigning
data points to line orientation estimates, and the M-step repositions the line orientation estimates to the points assigned to them. After
convergence, the estimated line orientations coincide with the linear subspace directions in the scatter plot.

bin is subsequently scaled by its kurtosis, kurt(ck). Weighting
the frequency bins that have a Laplacian distribution of
values greater than those that have a Gaussian pushes those
observations away from the origin while pulling the noisy
observations toward the origin, resulting in better defined
lines and improved line estimates.

The effect of kurtosis scaling the STFT coefficients is
illustrated in Figure 4. It can be seen that the kurtosis
weighted STFT domain produces the best defined lines,
which is especially evident for the two mixtures of two
sources scatter plot. The effectiveness of kurtosis scaling is
discussed in Section 3.3.

2.4. Automatic detection of the number of sources

For most BSS algorithms, the number of sources, N , present
in the mixtures is a parameter that must be manually
specified by the user. One of the advantages of the LOST
algorithm is that the number of sources can be detected
from the mixtures automatically. The principal eigenvalues
corresponding to the columns of ̂A indicate the variance of
each discovered line. If N is specified to a value greater than
the number of actual sources, then a line (or a number of
lines) may be represented by many vectors. Consequently, the
energy associated with the variance of the line is split among
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Figure 4: Scatter plots for two mixtures of two sources and two mixtures of three sources in the time domain ((a)-(b)), real coefficients of
the 512-point STFT domain ((c)-(d)) and kurtosis weighted STFT domain ((e)-(f)). It can be seen that the kurtosis scaled STFT domain
produces the best defined lines, which is especially evident for the two mixtures of two sources scatter plot. The figures axes are measured in
arbitrary units of mixture coefficients.
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the vectors, resulting in the vectors having small principal
eigenvalues.

We employ a heuristic that exploits the indicative
properties of the principal eigenvalues to identify the number
of sources. An upper limit on the number of sources, Nmax,
is specified in advance and a corresponding number of line
orientation vectors are initialised. As the algorithm iterates,
extraneous line orientation vectors are pruned as their
principal eigenvalues fall beneath a predefined threshold, τ.
In this way, the algorithm detects the number of sources in
the mixtures. The accuracy of this scheme is discussed in
Section 3.4.

2.5. Source unmixing

The dimensionality of the estimated mixing matrix, ̂A,
determines the procedure used to estimate the sources, ŝ.
Therefore, so as to be applicable to separation problems that
exhibit an arbitrary number of sources and mixtures, the
LOST algorithm employs three different source-unmixing
methods. For the even-determined case, where M = N ,
̂A is square and the data points can be assigned to line
orientations using ŝ(t) = Wx(t). When there are more
observations than sources, that is, the over-determined case
(M > N), data points can be assigned to sources by
finding the least squares solution. When M < N , the
under-determined case, the inverse of A is ill-posed since
̂Aŝ(t) = x(t) has more unknowns in s than knowns in x,
therefore S needs to be estimated by some other means. One
technique is so-called hard assignment of coefficients [19–
23]. Another is partial assignment, where each coefficient is
decomposed into more than one source. For sparse sources,
this is generally done by minimisation of the L1-norm,
which can be seen as a maximum likelihood reconstruction
under the assumption that the coefficients are drawn from a
Laplacian distribution—this being the method used by the
LOST algorithm. For complex data L1-norm minimisation
can be solved using second-order conic programming (SOCP).
Alternatively, L1-norm minimisation can be implemented by
a linear programming where the real and imaginary parts are
treated separately, thus doubling the number of coefficients.
Furthermore, it has been shown that this approach gives
solutions that are comparable to, or even better than SOCP,
with the added advantage of lower computational cost
for low-dimensional problems [24]. Minimisation of the
L1-norm may also be used for the over-determined case,
although the resultant separation performance is essentially
the same as for least squares.

2.6. The LOST algorithm summary

The following is a summary of the LOST algorithm, describ-
ing both line orientation estimation and source unmixing.

2.6.1. Line estimation

(1) Create a scatter plot of X in a sparse domain, transform
the observations, x1, . . . , xM , using an STFT, and perform

kurtosis scaling of the coefficients; the transformed observa-
tions are subsequently plotted against each other.

(2) Randomly initialise the N line orientation vectors vi,
where ‖vi‖ = 1 throughout, and initialise β to a sufficiently
large value. For the automatic detection of sources, initialise
N = Nmax line orientation vectors.

(3) Partially assign each observation, x(t), to each line
orientation vector, vi, using a soft data assignment:

qit =
∥

∥x(t)− (vi·x(t)
)

vi
∥

∥

2
,

q̃it = e−βqit
∑

i′ e−βqi′ t
,

(15)

where β controls the boundary between the regions
attributed to each line, and q̃it are the computed weightings
of the observation at time t for each line i.

(4) Calculate the covariance matrix of the weighted
observations assigned to each line. The covariance matrix
expression and assignment weightings are combined as
follows:

Σi =
∑

t q̃it
(

x(t)− μ)(x(t)− μ)T
∑

t q̃it
, (16)

where μ is a vector of the mean values of the rows of X,
which is typically zero for speech, and Σi is the covariance
of weighted observations associated with line i.

(5) Update the line orientation estimates to the principal
eigenvector of each covariance matrix. The eigenvector
decomposition of Σi is

Σi = UiΛiU−1
i , (17)

where the columns of the matrix Ui contain the eigenvectors
of Σi, and the diagonal matrix Λi contains its associated
eigenvalues λ1, . . . , λM . The new line orientation vector
estimate is the principal eigenvector of Σi:

vi ←− umax, (18)

where umax is the principal eigenvector, that is, the eigenvec-
tor with the largest eigenvalue, λmax. For automatic detection
of sources, compare all λmax to the predefined threshold τ,
and remove at most one orientation vector which is beneath
this threshold.

(6) Update β using the variances that are orthogonal to
the direction of the lines, select the second largest eigenvalue
from each diagonal matrix Λi, and update to the reciprocal
of the largest eigenvalue from this set:

β ←− 1
max

(

λ1, . . . , λN
) , (19)

where λi is the second largest eigenvalue of Σi. Return to step
3 and repeat until vi converge.

(7) After convergence, adjoin the line orientations esti-
mates to form ̂A:

̂A = [v1| · · · |vN
]

. (20)
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Contrasting approaches for mixing matrix estimation
include: kernel methods [25], clustering using topographic
maps [26], feature extraction using the Hough transfor-
mation [23], joint unitary diagonalisation [7], entropy
maximisation [6], and independence maximisation [27]. All
of which are discussed in [28].

2.6.2. Source unmixing

(1) Perform LOST line estimation procedure to calculate
̂A.

(2) (a) Even-determined case, source estimates are
calculated using linear transformation:

ŝ(t) = Wx(t), t = 1, . . . ,T , (21)

where W = ̂A−1.
(b) Over-determined case, source estimates are

calculated by finding the least squares solution:

minimise
∥

∥̂Aŝ(t)− x(t)
∥

∥

2, t = 1, . . . ,T. (22)

(c) Under-determined case, source estimates are
calculated using L1-norm minimisation for
each observation in the sparse STFT domain,
x(ω), such that

argmin
ŝ(ω)∈RN

‖ŝ(ω)‖1 subject to ̂Aŝ(ω) = x(ω). (23)

(The solution can be found efficiently using
linear programming [29]. We introduce vectors
s+ and s−, each with the same dimensionality
as ŝ(t), and use the linear constraints s+, s− ≥
0 and ̂As+ − ̂As− = x(t). The minimisation
of ‖ŝ‖1 =

∑

i|ŝi| becomes the linear objective
of minimising

∑

i(s
+
i + s−i ). After solving this

system, the desired coefficients are ŝ(t) = s+ −
s−. When using complex data, as in the case
of a STFT representation, we treat the real and
imaginary parts separately, thus doubling the
number of coefficients.) Subsequent to which,
an inverse transformation is performed, ŝ(ω) �→
ŝ(t).

(3) The final result is an N×T matrix ̂S that contains the
source estimates, ŝ1, . . . , ŝN , in each row.

3. EXPERIMENTS

To demonstrate the performance of the LOST algorithm,
we investigate its separation performance when applied to
speech mixtures: We use speech sources that are extracted
from a commercial audio CD of poems read by their authors
[30]; each source is a ten second segment of a poem, which
has been down-sampled to 8 kHz; details of the extraction
procedure and the poems used are presented in the appendix.

Throughout this section we use the notation MmNs to
denote the mixtures, where M and N indicate the number
of mixtures and sources respectively, for example, 4m6s

indicates an instantaneous mixture that has 4 observations
of 6 sources. For all experiments, we evaluate the separation
performance of the LOST algorithm when applied to the
following mixture set: 2m2s, 2m3s, 3m2s, 3m3s, 3m4s, 4m3s,
4m4s, 4m5s, and 4m6s; which includes even-determined,
over-determined and under-determined mixtures.

3.1. Performance measurement

For the purposes of ease of comparison with existing
separation methods, we evaluate the separation performance
of the LOST algorithm using the measures provided by
the BSS EVAL toolbox [31]. The performance measures are
based on the principle that a given source estimate, ŝ, is
composed of the original source and different classes of
additive noise:

ŝ(t) = s(t) + εi(t) + εn(t) + εa(t), (24)

where εi(t) is noise due to interference from other sources,
εn(t) is perturbating noise (such as Gaussian noise) and εa(t)
is the noise due to artifacts (such as musical noise). The noise
introduced by each class is estimated by the toolbox and used
in the following global performance measures:

(1) Source-to-Artifact Ratio (SAR): Measures the level of
artifacts in the source estimate,

SAR =
∥

∥s + εi + εn
∥

∥

2

∥

∥εa
∥

∥

2 . (25)

(2) Source-to-Interferences Ratio (SIR): Measures the level
of interference from the other sources in the source
estimate,

SIR =
∥

∥s
∥

∥

2

∥

∥εi
∥

∥

2 . (26)

(3) Source-to-Distortion Ratio (SDR): Provides an overall
separation performance criterion,

SDR =
∥

∥s
∥

∥

2

∥

∥εi + εn + εa
∥

∥

2 . (27)

All performance measures are expressed in dB, where higher
performance values indicate better quality estimates.

The order of the elements within the rows of the esti-
mated A cannot be determined correctly, which may result
in incorrect labelling of the returned source estimates, that
is, permutation ambiguity associated with BSS. Therefore,
prior to performance evaluation, we relabel the estimates by
calculating the signal-to-noise ratio (SNR) of each source
estimate with all the original sources, and assign each
estimate the label of source that achieves the largest SNR.

3.2. Transform sparseness

We achieve a sparse representation of the mixtures by
exploiting the sparseness of speech in the Short-Time Fourier
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Transform domain. In order to find the optimal transform
parameters for the data, we perform separation over a wide
parameter space and evaluate the estimates. Specifically,
we perform an STFT on each mixture where each frame
is windowed using a Hamming function over a range of
FFT sizes, {128, 256, 512, 1024, 2048, 4096}, and FFT frame
advances, {1/16, 1/8, 1/4, 1/2, 1} (expressed in fractions of
FFT size). We perform this procedure for each of the
previously specified mixtures and repeat for 40 Monte
Carlo runs, resulting in a total of 10800 (6 × 5 × 9 × 40)
LOST algorithm experiments—automatic source detection
is not used. Furthermore, the sources used in each mixture
are randomly selected from our set of source signals (see
the appendix), and are mixed using a randomly generated
mixing matrix. The procedure for each experiment is as
follows:

(1) N source signals are randomly selected from the set
of sources presented in the appendix, and are mixed
using a randomly generated A, which has normalised
columns, resulting in a matrix of observations, X =
AS.

(2) The LOST algorithm (Section 2.6) is applied to X,
and the source estimates, ̂S, are constructed.

(3) The estimates and the original sources are used to
evaluate the SIR, SAR, and SDR performance of the
LOST algorithm.

3.2.1. Results

The results from all experiments are collated and separation
performance is calculated as follows: The performance values
of the source estimates for each experiment are averaged,
which are themselves averaged over 40 Monte Carlo runs.
The worst, median and best performances results, and
the transform parameters that achieved these results are
tabulated in Table 1; average values for β and iterations are
also tabulated. As indicated in Figure 2 the sparseness of the
coefficients in the transform domain will have an important
effect on how well defined the line orientations will be,
which ultimately controls the separation performance of
the LOST algorithm. The results show that a frame size of
4096 produces the worst separation performance for all three
measures, which indicates that speech sampled at 8 kHz is
not sufficiently sparse in this domain. Median performance
is achieved for a frame size of 128 or 256, while the best
performance is achieved for 512 and 1024. It is evident
that the average β values obtained for the best performance
values are smaller than all others, indicating that the line
orientations are well defined when using the associated STFT
parameters. Furthermore, the best performance experiments
typically converge the fastest. Therefore, the sparseness
of the transform domain effects not only the separation
performance but convergence speed also.

To analyse the performance of the LOST algorithm for
STFT parameters that achieve good separation, we select
a subset of the experiments that have a frame size of 512
or 1024 (which results in a total of 400 experiments for
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Figure 5: SDR results for the LOST algorithm: Box plots are used
to illustrate the performance results for each mixture, with each
box representing the median and the interquartile range of the
results. For SDR, which represents overall separation performance,
separation performance decreases as M & N increase, which
decreases further as N increases greater than M.

each mixture) and represent the results using box plots:
Each box presents information about the median and the
statistical dispersion of the results. The top and bottom of
each box represents the upper and lower quartiles, while the
length between them is the interquartile range; the whiskers
represent the extent of the rest of the data, and outliers
are represented by +. Box plots for SDR, SIR, and SAR are
presented in Figure 5, Figure 6, and Figure 7 respectively.

The performance values for SDR indicate that over-
determined mixtures produce the best results, while under-
determined mixtures produce the worst, which is to be
expected for under-determined mixtures, as there are more
unknowns in s than knowns in x. The general trend in
SDR performance is that as M and N increase together,
separation performance decreases, which decreases further
as N increases greater than M: Comparing 2m2s and 4m4s
for example, both are even-determined mixtures, however
the median SDR achieved for 4m4s is lower than 2m2s,
indicating that an increase in M and N together degrades
performance. Furthermore, as indicated by the median
SDR for 4m4s, 4m5s & 4m6s, when M is fixed and N
increases greater thanM, SDR performance degrades further.
However, when N is fixed and M increases, as is the case for
2m3s, 3m3s & 4m3s, SDR performance increases.

For SAR performance, the large distances between
the median values for the even-determined and under-
determined performance results illustrate the high level of
artifacts present in the under-determined mixture source
estimates. Listening to these estimates reveals the presence
of portions of the other sources in the estimates. Such
artifacts are not audible for the even-determined or over-
determined source estimates, and are produced by L1-
norm minimisation when more than M sources are active
at the same time. This contrasts with SIR, where the
difference between even-determined and under-determined
performance is not so great.

It is worth noting that over all performance mea-
sures, increasing the number of observations for an even-
determined mixture, does not greatly improve separation
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Table 1: The relationship between transform parameters and the separation performance of the LOST algorithm; average separation
performance over 40 Monte Carlo runs for each experiment.

Measure
Rand.
Mix.

Worst performance Median performance Best performance

FFT param.
β Iter. Avg. res.

(dB)
FFT param.

β Iter. Avg. res.
(dB)

FFT param.
β Iter. Avg. res.

(dB)Frame Adv. Frame Adv. Frame Adv.

SDR

2m2s 128 32 45.07 10.98 35.49 128 8 36.78 9.35 39.0 512 128 27.27 7.57 42.55

2m3s 256 32 61.5 20.96 2.25 128 8 12.18 23.98 8.50 1024 256 10.14 18.2 11.15

3m2s 128 128 75.93 10.48 35.20 256 16 28.11 7.14 41.94 1024 64 13.18 9.32 46.88

3m3s 4096 1024 9.6 23.05 22.52 128 128 92.82 16.07 28.2 1024 128 5.86 15.8 32.97

3m4s 4096 4096 34.22 27.49 5.86 128 8 67.14 30.53 10.94 1024 512 7.01 21.93 13.75

4m3s 4096 2048 12.56 20.57 25.66 256 16 22.59 15.1 30.59 512 32 8.04 14.83 34.95

4m4s 4096 2048 8.01 28.93 18.16 128 16 73.33 20.9 23.60 512 32 6.47 22.71 28.91

4m5s 128 8 42.28 33.14 6.21 128 16 63.71 36.05 11.60 512 128 5.45 32.36 15.97

4m6s 4096 4096 30.47 41.88 1.29 128 8 57.06 48.49 8.1 512 64 4.85 47.46 11.38

SIR

2m2s 128 32 45.07 10.98 35.50 128 8 36.78 9.35 39.16 1024 1024 27.38 7.54 42.72

2m3s 256 32 61.5 20.96 9.47 128 8 12.18 23.98 13.38 1024 1024 14.14 17.84 16.51

3m2s 128 128 75.93 10.48 35.22 256 16 28.11 7.14 42.7 1024 64 13.18 9.32 47.20

3m3s 4096 1024 9.6 23.05 22.52 128 128 92.82 16.07 28.3 1024 128 5.86 15.8 32.98

3m4s 4096 4096 34.22 27.49 11.79 256 16 17.64 26.19 15.60 1024 512 7.01 21.93 18.94

4m3s 4096 2048 12.56 20.57 25.66 256 16 22.59 15.1 30.59 512 32 8.04 14.83 34.95

4m4s 4096 2048 8.01 28.93 18.16 128 16 73.33 20.9 23.61 512 32 6.47 22.71 28.92

4m5s 128 8 42.28 33.14 11.13 256 32 15.22 29.6 15.18 512 128 5.45 32.36 19.97

4m6s 4096 4096 30.47 41.88 7.86 256 16 16.12 38.88 12.22 512 64 4.85 47.46 15.94

SAR

2m2s 512 32 57.4 10 66.88 128 8 36.78 9.35 69.3 128 8 36.78 9.35 70.15

2m3s 512 64 108.55 23.87 5.63 512 128 31.87 20.31 13.60 512 128 31.87 20.31 20.26

3m2s 128 128 75.93 10.48 69.31 256 16 28.11 7.14 71.80 256 16 28.11 7.14 72.44

3m3s 4096 1024 9.6 23.05 64.35 128 32 81.74 16.34 65.98 512 64 9.27 17.59 66.78

3m4s 4096 4096 34.22 27.49 9.83 256 16 17.64 26.19 16.27 512 128 10.71 24.81 20.25

4m3s 1024 128 5.86 23.6 67.7 128 8 75.01 20.07 68.68 512 32 8.04 14.83 69.49

4m4s 1024 128 3.92 29.5 62.56 128 16 73.33 20.9 64.3 1024 512 4.7 26 65.45

4m5s 128 8 42.28 33.14 11.97 128 16 63.71 36.05 19.14 1024 128 2.83 43.05 23.74

4m6s 4096 4096 30.47 41.88 4.43 128 8 57.06 48.49 13.78 1024 128 2.41 59.37 16.88

performance. For example, we can see from inspection of
the results for the mixtures 3m3s & 4m3s that the additional
observation provides a small increase in performance, the
same is also true for 2m2s & 3m2s. Such an incremental
improvement may defy preconceptions, but is typical of BSS
algorithms. A plot of the estimates for 4m6s produced by the
LOST algorithm is presented in Figure 8.

It is evident that there are many low-performance
outliers in the box plots, this is due to the random mixing
matrices used to generate our mixtures. Such randomly
generated mixtures may produce scatter plots that contain
lines that are too close for the LOST algorithm to separate
effectively, that is, A is an ill-conditioned matrix. The pres-
ence of outliers may be ameliorated by discarding random
matrices that have a poor condition number. However, in
the interests of rigorously testing the algorithm, the authors
have chosen not to implement such a scheme for these
experiments.

Overall, the LOST algorithm provides very good results
for the blind source separation of even-determined and

over-determined mixtures, and successfully achieves sepa-
ration of under-determined mixtures with good separation
performance.

3.3. Robustness to noise

We perform an empirical investigation on the separation
performance of the LOST algorithm when Gaussian noise
is added to S. The noise added to each source is measured
using the signal-to-noise ratio and is expressed in dB. We
perform experiments where Gaussian noise of the following
intensities is added to the each source: 20 dB, 15 dB, 10 dB,
5 dB, and 2 dB. As a means of comparison, we also perform
an experiment where no noise (∞ dB) is added to the
sources. We run the LOST algorithm without automatic
source detection using an FFT frame size of 512 and frame
advance of 128. In contrast to the experimental procedure
presented in Section 3.2, each mixture is generated using
a fixed mixing matrix and fixed set of sources, which is
necessary as we are only interested in robustness to noise
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Table 2: Average separation performance for the LOST algorithm on noisy mixtures, with and without kurtosis scaling.

Measure Fixed
mix.

FFT param. With kurtosis scaling Without kurtosis scaling

Frame Adv.
Avg. res. (dB) for added noise (SNR) Avg. res. (dB) for added noise (SNR)

None 20 dB 15 dB 10 dB 5 dB 2 dB None 20 dB 15 dB 10 dB 5 dB 2 dB

SDR

2m2s

512 128

55.95 59.17 49.11 50.20 49.13 33.76 41.88 41.81 42.59 42.57 46.51 31.35

2m3s 11.29 10.93 10.37 9.18 7.13 4.82 11.15 10.79 10.24 9.7 7.8 4.86

3m2s 35.3 33.14 31.5 28.39 25.81 23.10 27.3 26.52 25.82 24.10 20.94 16.33

3m3s 30.22 29.11 27.74 24.72 20.58 14.37 30.25 29.67 28.46 25.6 19.29 11.24

3m4s 13.80 13.71 13.10 11.68 9.32 5.72 9.43 13.37 12.98 11.90 9.80 6.31

4m3s 34.87 33.7 30.12 31.73 29.60 25.12 34.67 33.52 32.5 27.93 21.63 13.8

4m4s 29.85 28.62 27.32 24.82 20.71 15.26 27.31 26.27 24.97 22.12 16.63 9.62

4m5s 19.79 17.50 16.34 14.34 11.19 8.31 17.87 17.5 14.88 13.7 10.34 7.21

4m6s 12.17 11.95 11.22 9.54 7.25 4.64 13.32 12.92 11.45 9.81 7.22 0.15

SIR

2m2s

512 128

55.98 59.29 49.11 50.21 49.14 33.76 41.88 41.81 42.59 42.58 46.54 31.35

2m3s 16.64 16.7 15.29 13.65 10.77 7.43 16.49 15.96 15.22 13.62 10.74 7.30

3m2s 35.3 33.14 31.5 28.39 25.81 23.10 27.3 26.52 25.82 24.10 20.94 16.33

3m3s 30.22 29.11 27.74 24.72 20.58 14.37 30.25 29.67 28.46 25.6 19.29 11.24

3m4s 19.12 18.77 17.84 15.87 12.51 7.33 13.12 18.29 17.60 16.9 13.18 8.67

4m3s 34.87 33.7 30.12 31.73 29.60 25.12 34.67 33.52 32.5 27.93 21.63 13.8

4m4s 29.85 28.62 27.32 24.82 20.71 15.26 27.31 26.27 24.97 22.12 16.63 9.62

4m5s 26.51 23.70 22.28 19.72 15.21 10.82 24.5 22.92 19.85 17.48 13.63 9.3

4m6s 17.85 17.49 16.53 14.40 11.28 7.52 19.27 18.69 16.75 14.65 11.3 1.44

SAR

2m2s

512 128

77.47 77.29 77.29 77.32 78.18 79.28 77.48 77.26 77.27 77.32 78.17 79.29

2m3s 12.93 12.67 12.23 11.34 10.8 9.33 12.93 12.65 12.19 11.27 10.5 9.47

3m2s 74.24 74.7 74.5 74.67 74.52 76.22 74.7 73.97 73.96 74.53 74.35 75.92

3m3s 74.52 74.50 74.56 74.72 75.4 75.39 74.50 74.47 74.57 74.72 74.95 74.88

3m4s 16.2 16.8 15.67 14.78 13.79 15.82 16.24 15.52 15.36 14.76 14.4 15.7

4m3s 76.40 76.62 76.90 74.69 75.12 75.74 76.29 76.35 76.34 76.60 77.5 77.81

4m4s 66.87 66.88 66.88 66.83 66.93 68.57 66.78 66.77 66.76 66.63 66.42 67.45

4m5s 21.79 22.20 19.60 16.1 13.62 12.48 19.44 18.75 16.97 15.46 13.73 13.63

4m6s 13.93 13.76 13.13 11.84 10.8 8.85 14.80 14.48 13.29 11.95 10.27 15.66

and not general separation performance. Additionally, we
evaluate the performance of the LOST algorithm with and
without kurtosis scaling of the STFT coefficients.

3.3.1. Results

The results from all experiments are collated and averaged as
before, and separation performance for each experiment is
presented in Table 2. It is evident that the SIR performance
results degrade for all mixtures as the level of noise increases,
this reflects the perturbation of the line orientations by the
random noise, which influences the level of interference from
other sources that will be present in the source estimates.

The SAR performance remains relatively constant for
the even-determined and over-determined mixtures over
all noise levels, while the results for the under-determined
results gradually degrade as noise increases. This degradation
in performance demonstrates that L1-norm minimisation is
generally unstable for perturbation of A. Furthermore, the
results show that SAR is largely unaffected by the kurtosis
scaling of the transform coefficients, which demonstrates
that kurtosis scaling has no effect on the presence of artifacts.

Table 3: Typical run times for the LOST algorithm on 10 second
mixtures, using a frame size of 512 and frame advance of 128.

Mixture Time Mixture Time

2m2s 7 s 4m3s 20 s

2m3s 30 s 4m4s 18 s

3m2s 8 s 4m5s 45 s

3m3s 14 s 4m6s 60 s

3m4s 40 s

Overall performance, as indicated by SDR, demon-
strates that the LOST algorithm achieves good separation
results over all noise levels. Furthermore, kurtosis scaling
improves separation performance for all mixtures at all
noise levels, however it is particularly effective for even-
determined and over-determined mixtures. The tabulated
results demonstrate that the LOST algorithm is an effective
algorithm for blind source separation of over-determined,
even-determined and under-determined mixtures, even in
the presence of noise.
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Figure 6: SIR results for the LOST algorithm: Box plots are used to
illustrate the performance results for each mixture, with each box
representing the median and the interquartile range of the results.
The results indicate that the source estimates become more resilient
to interference from other sources as M increases relative to N .

To illustrate the convergence of the LOST algorithm, con-
vergence curves for both β and the norm of ̂A are presented
for each mixture in Figure 9; the curves correspond to the
experiments presented in Table 2 where kurtosis scaling is
performed and no noise is added. It is evident that both β and
̂A converge to stable results after a small number of iterations,
demonstrating the fast convergence properties of the LOST
algorithm.

We implemented the LOST algorithm in C code, where
version 1.00 was used in our experiments. Furthermore, all
the experiments presented were run on a 3.06 GHz Intel
Pentium-4 based computer with 768 MB of RAM running
the Debian GNU/Linux operating system; typical run times
for a frame size of 512 and frame advance of 128 are
presented in Table 3.

3.4. Accuracy of automatic source detection scheme

Here, we investigate the accuracy of the automatic source
detection scheme employed by the by the LOST algorithm.
In our experiments we specify τ = 1.5 and generate each
mixture using a fixed mixing matrix and fixed set of sources,
as in Section 3.3. Furthermore, we run the LOST algorithm
using an FFT frame size of 512 and frame advance of 128.
We repeat each experiment for 100 Monte Carlo runs and
present the results in Table 4.

3.4.1. Results

The results from the experiments show that the scheme
achieves 100% accuracy for our even-determined and over-
determined mixtures over 100 Monte Carlo runs. For the
under-determined case, mixtures 3m4s and 4m5s provide
almost perfect accuracy; however, as the number of sources
increases greater than the number of mixtures, accuracy
deteriorates, as is the case for mixture 4m6s with 77%
accuracy. Although, the accuracy of the results may be
improved by adjusting τ.

Table 4: Accuracy of the LOST algorithm’s source detection
scheme; average principal eigenvalues with standard deviations
are also presented. results are for 100 Monte Carlo runs of each
experiment.

Mixture
Results

Avg. prin. eigenvalue Identified N correctly

2m2s 2.82± 0 100%

2m3s 4.79± 0 100%

3m2s 3.27± 0 100%

3m3s 8.66± 0 100%

3m4s 4.88± 0.01 99%

4m3s 6.02± 0 100%

4m4s 5.40± 0 100%

4m5s 6.49± 0.13 98%

4m6s 6.31± 0.02 77%

The average principal eigenvalues over all runs reveal that
there is a variance of results for the mixtures where 100%
accuracy was not achieved. This variance is caused when the
energy in the principal eigenvalues is split among extraneous
line orientation vectors when over-estimation of the number
of sources occurs. Furthermore, we have observed that the
detection scheme only ever over estimates the number of
sources in the mixtures.

3.5. LOST versus geoICA

One of the main advantages of the LOST algorithm
is that it provides a solution for the under-determined
case where M ≥ 2. In order to demonstrate the
usefulness of the LOST algorithm when applied to
under-determined mixtures, we compare its performance
to the geoICA algorithm [12], which also provides a
solution for the under-determined case where M ≥
2(Matlab implementations for geoICA and GCE are available
at http://www.biologie.uni-regensburg.de/Biophysik/Theis/
research/geoICA.zip). We test both algorithms using the pre-
viously specified mixtures; where A is randomly generated
and the sources are randomly selected as in Section 3.2.
Furthermore, each experiment is repeated for 40 Monte
Carlo runs. For the LOST algorithm a FFT size of 512 and
frame advance of 128 is used, geoICA does not specify a
STFT. However, in order to place both algorithms on an
even footing in terms of mixture sparseness, we perform
geoICA using speech that is STFT transformed using the
same parameters as those specified for the LOST algorithm.
Furthermore, we use geoICA with its default number of
iterations, which is 10 times the number of samples.

The geoICA algorithm specifies no method to separate
the sources once ̂A is found (such as L1-norm minimisation),
therefore we measure the performance of the algorithms
using the Generalised Crosstalk Error (GCE) [12] between A
and ̂A:

GCE = min
L∈Π

∥

∥A− ̂AL
∥

∥, (28)

http://www.biologie.uni-regensburg.de/Biophysik/Theis/research/geoICA.zip
http://www.biologie.uni-regensburg.de/Biophysik/Theis/research/geoICA.zip
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Figure 7: SAR results for the LOST algorithm: Box plots are used
to illustrate the performance results for each mixture, with each box
representing the median and the interquartile range of the results.
For SAR, it is evident that there are large differences between the
performances achieved for even-determined and under-determined
mixtures, which is a consequence of the artifacts produced by L1-
norm minimisation.

Table 5: Average GCE with standard deviations for LOST and
geoICA over 40 Monte Carlo runs for each experiment; smaller
values indicate better performance.

Mixture
Algorithm

LOST geoICA geoICA + STFT

2m2s 0.35± 0.83 0.45± 0.64 0.08± 0.2

2m3s 0.37± 0.97 0.94± 0.45 0.84± 0.53

3m2s 0.65± 1.45 0.29± 0.5 0.1± 0.33

3m3s 0.08± 0.1 1.22± 0.61 0.96± 0.68

3m4s 0.29± 0.54 1.76± 0.54 1.28± 0.7

4m3s 0.07± 0.02 1.52± 0.8 1.02± 0.84

4m4s 0.54± 0.88 2.04± 0.71 1.41± 0.73

4m5s 0.46± 0.67 2.87± 0.82 2.08± 0.72

4m6s 0.91± 1.01 3.78± 0.81 2.4± 0.81

where the minimum is taken over the group Π of all
invertible matrices having only one non-zero entry per
column. When A and ̂A are equivalent, GCE vanishes, which
indicates that GCE decreases as performance increases.

The results for each experiment are collated, and the aver-
age GCE performances, along with their standard deviations,
are presented in Table 5. It is evident from the results that the
LOST algorithm achieves superior performance over geoICA
when applied to the separation of speech mixtures. While
geoICA performs well for 2m2s, 2m3s, and 3m2s; it performs
badly for all other mixtures, even when the observations
are transformed to the STFT domain. The general trend of
the results show that geoICA does not perform well when
M > 2, and while the LOST algorithm does exhibit decreased
performance, the scale of degradation is not as great as that
exhibited by geoICA. One reason for this may be that geoICA
maps the observations to the unit half-sphere, which may
cause edge effects when the sources lie near or on the equator,
as the mapping may fail to consolidate the line’s two halves
giving the illusion of two lines, for example, if we take a
scatter plot of two mixtures that exhibits two orthogonal

lines that are exactly vertical and horizontal, a mapping to
the unit half-sphere will result in one cluster for the vertical
line and two for the horizontal line, due to perturbations
around the line. Another reason may be the fact that geoICA
is a simple clustering approach that does not specify any
particular prior, unlike the LOST algorithm, which assumes
a Laplacian prior.

4. DISCUSSION

One of the main benefits of our approach is that a solution
for the under-determined case can be found. In contrast to
other similar sparse methods [32], the LOST algorithm is
not constrained to just two mixtures. Furthermore, by com-
parison with the geoICA algorithm, we have demonstrated
that the LOST algorithm produces good results when M > 2.
Recently, modifications have been proposed that extend the
DUET [33] blind source separation algorithm to the case
where M ≥ 2 [34]. Although, unlike the LOST algorithm,
user intervention is required to identify sources. However,
further extensions that employ k-means clustering for source
identification have been proposed [35].

The performance of the LOST algorithm is heavily
influenced by how well defined the linear subspaces are
in the transform domain. Therefore, the sparse domain
transformation is an integral component of the algorithm,
and appropriate selection of such is required to provide
useful results. We use the STFT transform, which achieves
good separation performance for speech mixtures when
an FFT frame size of 512 or 1024 is used. Alternative
transformations such as Gabor or wavelet could also be used.

The algorithm we present is a batch operation algorithm,
which operates on the entire set of observations. Conversely,
an online approach that operates on an observation-by-
observation basis is also possible. We have previously pre-
sented such an algorithm [13], where the PCA computations
of the batch algorithm are replaced by the stochastic gradient
algorithm, which converges to the direction of the largest
variance of its input data. Moreover, the source unmixing
stage is also computed in an online manner.

The scheme we use for line estimation involves updating
the current line estimates to the principal eigenvector of the
covariance matrix associated with each line. While this is a
perfectly acceptable assumption for small values of M. For
very large hyper spaces, where M is large, such a scheme may
not produce an optimal estimate of the direction of linear
subspace. The same is also true for the β update. Therefore, to
more accurately estimate the direction and width of a linear
subspace in a high dimensional space, a more sophisticated
scheme using the provided eigenvalues may be required.

The scheme we implement to automatically detect the
number of sources present in the mixtures requires a
threshold value, τ, for our data τ = 1.5 works well. However,
when the LOST algorithm is applied to other data sets our
choice for τ may not be optimal. In this event, a good guess
for τ can be gleaned from the principal eigenvalues, which
are presented in a data file when our C code implementation
of the LOST algorithm is run.
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Figure 8: Source estimate plots for the LOST algorithm. The plots above show ten second clips of six acoustic sources, s1, . . . , s6; 4 mixtures,
x1, . . . , x4; and 6 source estimates, ŝ1, . . . , ŝ6. Sound wave pressure is plotted against time in units of seconds.

The LOST algorithm is specific to the instantaneous
mixing case. However, it has been demonstrated that scatter
plot representations can also be used in the anechoic
case, where source arrival delays between sensors are also
considered (See [28] for a discussion of the anechoic &
echoic generative model). A method for anechoic unmixing
where the amplitude and delay parameters of the mixing
process are segregated into two matrices is presented in
[36]. The amplitude parameters are discovered using a
line estimation procedure (kernel density estimation [25])
similar to the LOST algorithm, where a scatter plot is formed
from the magnitudes of the complex-valued observations.
The estimated delay matrix is formed by taking the real and
imaginary coefficients assigned to each source in the previous
operation, and iteratively rectifying the delay parameter

until the kernel function of the data is maximised. The
procedure is repeated for the N sources and the resultant
delay parameters form the estimated delay matrix. Following
such an approach, it may be possible to extend the LOST
algorithm to the anechoic case.

Unlike other BSS algorithms [12, 32], the source iden-
tification procedure of the LOST algorithm is not prone
to edge effects (as previously discussed in Section 3.5),
which enables the LOST algorithm to separate arbitrarily
positioned sources.

Throughout our experiments, we have observed on
occasion that the random initialisation of A affects the
performance of the line estimation procedure. Sensitivity to
initial conditions is common among clustering algorithms,
and in the case of the LOST algorithm, from our experience
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Figure 9: LOST algorithm convergence plots for the following experiments: 2m2s ◦, 2m3s�, 3m2s�, 3m3sΔ, 3m4s �, 4m3s �, 4m4s+,
4m5s�, 4m6s •; the convergence of the mixing matrix, ̂A is presented on the right, while convergence of the boundary value, β, is presented
on the left. It is evident that both β and ̂A quickly converge to stable values.

such a scenario is indicated when β < 1. In this event, we
suggest that A is reinitialised and that the experiment is
repeated.

Finally, occasionally we observe that the scheme we
use for the adaption of β causes the parameter to grow
without bounds. This typically happens when the transform
parameters selected produce scatter plots that are not well
defined. When this behaviour is observed, we recommend
that β is fixed to some suitably large value. Alternatively,
we have observed that increasing the dynamic range of the
mixtures works on occasion.

5. CONCLUSION

In this paper, we presented an algorithm that identifies linear
subspaces that cross the origin, we have illustrated how such
a problem arises in the context of blind source separation
of instantaneous mixtures, where mixture matrix columns
correspond to linear subspaces in a scatter plot. This method,
combined with a transformation into a sparse domain and
an L1-norm optimisation, constitutes the LOST algorithm,
which provides a solution for the blind source separation of
instantaneous mixtures with an arbitrary number of mix-
tures and sources. Moreover, we implement a simple scheme
that automatically detects the number of sources present in
the mixtures, where extraneous line vectors are pruned when
the energy of its principal eigenvalue is beneath a predefined
threshold. We performed an extensive investigation on the
general separation performance of the LOST algorithm using
randomly generated mixtures, which yielded good results,
and demonstrated the algorithm’s robustness in the presence
of noise. Furthermore, we demonstrated that the LOST

algorithm performs well when compared to the geoICA
algorithm.

LOST algorithm software

Our C code implementation of the LOST algorithm is
released under the GNU General Public License and is freely
available for downloaded from the first author’s webpage:
http://ee.ucd.ie/∼pogrady/.

APPENDIX

SOURCES SIGNALS

The source signals are taken from a commercial audio CD
of poems read by their authors [30]. The data is recorded
as raw 44.1 kHz 16-bit stereo waveforms. Prior to further
processing, ten-second clips are extracted, the two signal
channels are averaged, and the data is down-sampled to
8 kHz. The scale of the audio data is arbitrary, leading to
the arbitrary units on the auditory waveforms presented
throughout the paper. The sources are extracted from the
following poems:

s1 Coole Park and Ballylee, by William Butler Yeats.

s2 The Lake Isle of Innisfree, by William Butler Yeats.

s3 Among Those Killed in the Dawn Raid Was a Man
Aged a Hundred, by Dylan Thomas.

s4 Fern Hill, by Dylan Thomas.

s5 Ave Maria, by Frank O’Hara.

s6 Lana Turner Has Collapsed, by Frank O’Hara.

http://ee.ucd.ie/~pogrady/
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Moulines, “A blind source separation technique using second-
order statistics,” IEEE Transactions on Signal Processing, vol. 45,
no. 2, pp. 434–444, 1997.

[8] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for
independent component analysis,” Neural Computation, vol.
9, no. 7, pp. 1483–1492, 1997.

[9] J.-F. Cardoso, “Eigen-structure of the fourth-order cumu-
lant tensor with application to the blind source separation
problem,” in Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP ’90), vol. 5, pp.
2655–2658, Albuquerque, NM, USA, April 1990.

[10] M. Lewicki and T. J. Sejnowski, “Learning nonlinear over-
complete representations for efficient coding,” in Advances in
Neural Information Processing Systems 10, pp. 556–562, MIT
Press, Denver, Colo, USA, 2001.

[11] P. D. O’Grady and B. A. Pearlmutter, “Soft-LOST: EM
on a mixture of oriented lines,” in Proceedings of the 5th
International Conference on Independent Component Analysis
and Blind Signal Separation (ICA ’04), vol. 3195 of Lecture
Notes in Computer Science, pp. 430–436, Granada, Spain,
September 2004.

[12] F. J. Theis, E. W. Lang, and C. G. Puntonet, “A geometric
algorithm for overcomplete linear ICA,” Neurocomputing, vol.
56, no. 1–4, pp. 381–398, 2004.

[13] P. D. O’Grady and B. A. Pearlmutter, “Hard-LOST: modified
k-means for oriented lines,” in Proceedings of the Irish Signals
and Systems Conference, pp. 247–252, June-July 2004, Belfast,
UK.

[14] M. Kearns, Y. Mansour, and A. Y. Ng, “An information-
theoretic analysis of hard and soft assignment methods
for clustering,” in Proceedings of the 13th Conference on
Uncertainty in Artificial Intelligence (UAI ’97), pp. 282–293,
Providence, RI, USA, August 1997.

[15] K. Pearson, “On lines and planes of closest fit to systems of
points in space,” Philosophical Magazine, vol. 2, pp. 559–572,
1901.

[16] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: an algorithm
for designing overcomplete dictionaries for sparse representa-
tion,” IEEE Transactions on Signal Processing, vol. 54, no. 11,
pp. 4311–4322, 2006.

[17] M. Babaie-Zadeh, A. Mansour, C. Jutten, and F. Marvasti, “A
geometric approach for separating several speech signals,” in
Proceedings of the 5th International Conference on Independent
Component Analysis and Blind Signal Separation (ICA ’04),
vol. 3195 of Lecture Notes in Computer Science, pp. 798–806,
Granada, Spain, September 2004.

[18] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm,”
Journal of the Royal Statistical Society B, vol. 39, no. 1, pp. 1–38,
1976.

[19] S. T. Rickard and F. Dietrich, “DOA estimation of many W-
disjoint orthogonal sources from two mixtures using DUET,”
in Proceedings of the 10th IEEE Workshop on Statiscal and Array
Processing (SSAP ’00), pp. 311–314, Pocono Manor, Pa, USA,
August 2000.

[20] S. T. Roweis, “One microphone source separation,” in
Advances in Neural Information Processing Systems 13, pp. 793–
799, MIT Press, Denver, Colo, USA, 2001.

[21] L. Vielva, D. Erdogmus, and J. C. Principe, “Underdetermined
blind source separation using a probabilistic source sparsity
model,” in Proceedings of the 2nd International Workshop on
Independent Component Analysis and Blind Signal Separation
(ICA ’00), pp. 675–679, Helsinki, Finland, June 2000.

[22] L. Vielva, D. Erdogmus, C. Pantaleón, I. Santamarı́a, J.
Pereda, and J. C. Prı́ncipe, “Underdetermined blind source
separation in a time-varying environment,” in Proceedings of
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP ’02), vol. 3, pp. 3049–3052, Orlando, Fla,
USA, May 2002.

[23] J. K. Lin, D. G. Grier, and J. D. Cowan, “Feature extraction
approach to blind source separation,” in Proceedings of the
7th IEEE Workshop on Neural Networks for Signal Processing
(NNSP ’97), pp. 398–405, Amelia Island, Fla, USA, September
1997.

[24] S. Winter, W. Kellermann, H. Sawada, and S. Makino, “MAP-
based underdetermined blind source separation of convolutive
mixtures by hierarchical clustering and �1-norm minimiza-
tion,” EURASIP Journal on Advances in Signal Processing, vol.
2007, Article ID 24717, 12 pages, 2007.

[25] P. Bofill and M. Zibulevsky, “Underdetermined blind source
separation using sparse representations,” Signal Processing, vol.
81, no. 11, pp. 2353–2362, 2001.

[26] M. M. van Hulle, “Clustering approach to square and non-
square blind source separation,” in Proceedings of the 9th IEEE
Workshop on Neural Networks for Signal Processing (NNSP ’99),
pp. 315–323, Madison, Wis, USA, August 1999.

[27] J. Herault and C. Jutten, “Space or time adaptive signal
processing by neural models,” in Proceedings of AIP Conference
on Neural Networks for Computing (AIP ’86), pp. 206–211,
Snowbird, Utah, USA, April 1986.

[28] P. D. O’Grady, B. A. Pearlmutter, and S. T. Rickard, “Survey
of sparse and non-sparse methods in source separation,”
International Journal of Imaging Systems and Technology, vol.
15, no. 1, pp. 18–33, 2005.

[29] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic
decomposition by basis pursuit,” SIAM Journal of Scientific
Computing, vol. 20, no. 1, pp. 33–61, 1998.



P. D. O’Grady and B. A. Pearlmutter 17

[30] E. Paschen and R. P. Mosby, Eds., Poetry Speaks: Hear Great
Poets Read Their Work from Tennyson to Plath, Sourcebooks,
Naperville, Ill, USA , 2001.

[31] C. Févotte, R. Gribonval, and E. Vincent, “BSS EVAL toolbox
user guide,” Tech. Rep. 1706, IRISA, Rennes, France, 2005.

[32] N. Mitianoudis and T. Stathaki, “Overcomplete source separa-
tion using Laplacian mixture models,” IEEE Signal Processing
Letters, vol. 12, no. 4, pp. 277–280, 2005.
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