
Dynamic Recurrent Neural NetworksBarak A. PearlmutterDecember 1990CMU-CS-90-196(supersedes CMU-CS-88-191)School of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213AbstractWe survey learning algorithms for recurrent neural networks with hidden units and attemptto put the various techniques into a common framework. We discuss �xpoint learning al-gorithms, namely recurrent backpropagation and deterministic Boltzmann Machines, andnon-�xpoint algorithms, namely backpropagation through time, Elman's history cuto� nets,and Jordan's output feedback architecture. Forward propagation, an online technique thatuses adjoint equations, is also discussed. In many cases, the uni�ed presentation leads togeneralizations of various sorts. Some simulations are presented, and at the end, issues ofcomputational complexity are addressed.This research was sponsored in part by The Defense Advanced Research Projects Agency, InformationScience and Technology O�ce, under the title \Research on Parallel Computing", ARPA Order No. 7330,issued by DARPA/CMO under Contract MDA972-90-C-0035 and in part by the National Science Foundationunder grant number EET-8716324 and in part by the O�ce of Naval Research under contract numberN00014-86-K-0678. The author held a Fannie and John Alexander Hertz Fellowship.The views and conclusions contained in this document are those of the author and should not beinterpreted as representing the o�cial policies, either expressed or implied, of the Hertz Foundation or theU.S. government.

Keywords: learning, sequences, temporal structure, recurrent neural networks, �xpoints

Contents1 Introduction 11.1 Why Recurrent Networks : 11.2 Why Hidden Units : 11.3 Continuous vs. Discrete Time : 22 Learning in Networks with Fixpoints 32.1 Will a Fixpoint Exist? : 32.2 Problems with Fixpoints : 42.3 Recurrent Backpropagation : 52.3.1 Simulation of an Associative Network : : : : : : : : : : : : : : : : : : 62.4 Deterministic Boltzmann Machines : 73 Backpropagation Through Time 93.1 Time Constants : 113.2 Time Delays : 123.3 Some Simulations : 133.3.1 Exclusive Or : 133.3.2 A Circular Trajectory : 153.3.3 A Figure Eight : 153.3.4 A Rotated Figure Eight : 163.4 Stability and Perturbation Experiments : 173.5 Leech Simulations : 184 Other Non-�xpoint Techniques 184.1 \Elman Nets" : 184.2 The Moving Targets Method : 184.3 Forward Propagation : 194.3.1 Extending Online Learning to Time Constants and Delays : : : : : : 204.3.2 Faster Online Techniques : 214.4 Feedforward Networks with State : 215 Teacher Forcing 215.1 In Continuous Time : 225.2 \Jordan Nets" : 235.3 Continuous Time \Jordan Nets" : 236 Summary and Conclusion 246.1 Complexity Comparison : 246.2 Future Work : 256.3 Conclusions : 256.4 Acknowledgments : 25i

1 Introduction1.1 Why Recurrent NetworksThe subject of this document is training recurrent neural networks. The problem of trainingnon-recurrent, layered architectures has been covered adequately elsewhere, and will not bediscussed here.The motivation for exploring recurrent architectures is their potential for dealing withtwo sorts of temporal behavior. First of all, recurrent networks are capable of settling to asolution, as in vision system which gradually solve a complex set of con
icting constraintsto arrive at an interpretation. Although this is discussed to some extent below, we are pri-marily concerned with the problem of causing networks to exhibit particular desired detailedtemporal behavior, as in the modeling of a central pattern generator of an insect.It should be noted that many real-world problems which one might think would requirerecurrent architectures for their solution seem soluble with layered architectures; for thisreason, we would urge engineers to try layered architectures �rst before resorting to the \biggun" of recurrence.1.2 Why Hidden UnitsWe will restrict our attention to training procedures for networks with hidden units, unitswhich have no particular desired behavior, are not directly involved in the input or outputof the network. For the biologically inclined, they can be thought of as interneurons.With the practical successes of backpropagation, it seems gratuitous to expound thevirtues of hidden units and internal representations. Hidden units make is possible fornetworks to discover and exploit regularities of the task at hand, such as symmetries orreplicated structure [15], and training procedures for exploiting hidden units, such as back-propagation, [18, 44] are behind much of the current excitement in the neural networks �eld.Also, training algorithms that do not operate with hidden units, such as the Widrow-Ho�LMS rule procedure [51], can be used to train recurrent networks without hidden units, sorecurrent networks without hidden units reduce to non-recurrent networks without hiddenunits, and therefore do not need special learning algorithms.Consider a neural network governed by the equationsdyidt = �yi + �(xi) + Ii (1)where yi is the state or activation level of unit i,xi =Xj wjiyj (2)is the total input to unit i, wij is the strength of the connection from unit i to unit j, and �is an arbitrary di�erentiable function. (Typically the function chosen is either the squashingfunction �(�) = (1 + e��)�1, in which case �0(�) = �(�)(1 � �(�)), or �(�) = tan�1(�), in1

which case �0(�) = (1+�(�))(1��(�)). Even though the latter symmetric squashing functionis usually preferable, as it has a number of computational advantages, the former was usedin all the simulations presented below.) The initial conditions yi(t0) and driving functionsIi(t) are the inputs to the system.This de�nes a rather general dynamic system. Even assuming that the external inputterms Ii(t) are held constant, it is possible for the system to exhibit a wide range of asymp-totic behaviors. The simplest is that the system reaches a stable �xpoint; in the next section,we will discuss two di�erent techniques for modifying the �xpoints of networks that exhibitthem.More complicated possible asymptotic behaviors include limit cycles and even chaos.Later, we will describe a number of training procedures that can be applied to trainingnetworks to exhibit desired limit cycles, or particular detailed temporal behavior. Althoughit has been theorized that chaotic dynamics play a signi�cant computational role in thebrain [11], there are no training procedures for chaotic attractors in networks with hiddenunits. However, Crutch�eld et al. [8] and Lapedes and Farber [27] have had success with theidenti�cation of chaotic systems using models without temporally hidden units.1.3 Continuous vs. Discrete TimeWe will be concerned predominantly with continuous time networks, as in (1). However,all of the learning procedures we will discuss can be equally well applied to discrete timesystems, which obey equations likeyi(t+ 1) = �(xi(t)) + Ii(t): (3)Continuous time has advantages for expository purposes, in that the derivative of the stateof a unit with respect to time is well de�ned, allowing calculus to be used instead of tediousexplicit temporal indexing, making for simpler derivations and exposition.When a continuous time system is simulated on a digital computer, it is usually con-verted into a set a simple �rst order di�erence equations, which is formally identical to adiscrete time network. However, regarding the discrete time network running on the com-puter as a simulation of a continuous time network has a number of advantages. First, moresophisticated and faster simulation techniques than simple �rst order di�erence equationscan be used, such as higher order forward-backward techniques. Second, even if simple �rstorder equations are used, the size of the time step can be varied to suit changing circum-stances; for instance, if the network is being used for a signal processing application andfaster sensors and computers become available, the size of the time step could be decreasedwithout retraining the network. Third, because continuous time units are sti� in time, theytend to retain information better through time. Another way of putting this is that theirbias in the learning theory sense is towards temporally continuous tasks, which is certainlyadvantageous if the task being performed is also temporally continuous.Another advantage of continuous time networks is somewhat more subtle. Even for taskswhich themselves have no temporal content, such as constraint satisfaction, the best way fora recurrent network to perform the required computation is for each unit to represent nearly2

the same thing at nearby points in time. Using continuous time units makes this the defaultbehavior; in the absence other forces, units will tend to retain their state through time. Incontrast, in discrete time networks, there is no a-priori reason for a unit's state at one pointin time to have any special relationship to its state at the next point in time.A pleasant bene�t of units tending to maintain their state through time is that it helpsmake information about the past decay more slowly, speeding up learning about the rela-tionship between temporally distant events.2 Learning in Networks with FixpointsThe �xpoint learning algorithms we will discuss assume that the networks involved convergeto stable �xpoints.1 Networks that converge to �xpoints are interesting because of the classof things they can compute, like constraint satisfaction and associative memory tasks. Insuch tasks, the problem is usually given to the network either by the initial conditions or bya constant external input, and the answer is given by the state of the network once it hasreached its �xpoint. This is precisely analogous to the relaxation algorithms used to solvesuch things as steady state heat equations, except that the constraints need not have spatialstructure or uniformity.2.1 Will a Fixpoint Exist?One problem with �xpoints is that recurrent networks do not always converge to them.However, there are a number of special cases that guarantee converge to a �xpoint.� Some simple linear conditions on the weights, such as zero-diagonal symmetry (wij =wji, wii = 0) guarantee that the Lyopunov functionL = �Xi;j wijyiyj +Xi (yi log yi + (1� yi) log(1 � yi)) (4)decreases until a �xpoint is reached [7]. The weight symmetry condition arises naturallyif weights are considered to be Bayesian constraints, as in Boltzmann Machines [17].� Atiya [4] showed that a unique �xpoint is reached regardless of initial conditions ifPij w2ij < max(�0), but in practice much weaker bounds on the weights seem to su�ce,as indicated by empirical studies of the dynamics of networks with random weights[41].� Other empirical studies indicate that applying �xpoint learning algorithms stabilizesnetworks, causing them to exhibit asymptotic �xpoint behavior [2, 12]. There is as yetno theoretical explanation for this phenomenon.1Technically, these algorithms only require that a �xpoint be reached, not that it be stable. However, itis unlikely (with probability zero) that a network will converge to an unstable �xpoint, and in practice theposibility of convergence to unstable �xpoints can be ignored.3

1

a b

c

2

y

LFigure 1: This energy landscape, represented by the curved surface, and the balls, repre-senting states of the network, illustrates some potential problems with �xpoints. The initialconditions a and b can di�er in�nitesimally but map to di�erent �xpoints, so the mappingof initial conditions to �xpoints is not continuous. Likewise, an in�nitesimal change to theweights can change which �xpoint the system evolves to from a given starting point bymoving the boundary between the watersheds of two attractors. Similarly, point c can bechanged from a �xpoint to a non-�xpoint by an in�nitesimal change to the weights.One algorithm that is capable of learning �xpoints, but that does not require the networkbeing trained to settle to a �xpoint in order to operate, is backpropagation through time.This has been used by Nowlan to train a constraint satisfaction network for the eight queensproblem, where shaping was used to gradually train a discrete time network without hiddenunits to exhibit the desired attractors [32].However, the other �xpoint algorithms we will consider take advantage of the specialproperties of a �xpoint to simplify the learning algorithm.2.2 Problems with FixpointsEven when it can be guaranteed that a network settles to a �xpoint, �xpoint learningalgorithms can still run into trouble. The learning procedures discussed here all computethe derivative of some error measure with respect to the internal parameters of the network.This gradient is then used by an optimization procedure, typically some variant of gradientdescent, to minimize the error. Such optimization procedures assume that the mappingfrom the network's internal parameters to the consequent error is continuous, and can failspectacularly when this assumption is violated.Consider mapping the initial conditions ~y(t0) to the resultant �xpoints, ~y(t1) = F(~y(t0)).Although the dynamics of the network are all continuous, F need not be. For purposes of4

visualization, consider a symmetric network, whose dynamics thus cause the state of thenetwork to descend the energy function of equation (4). As shown schematically in �gure 1,even an in�nitesimal change to the initial conditions, or to the location of a ridge, or to theslope of an intermediate point along the trajectory, can change which �xpoint the systemends up in. In other words, F is not continuous. This means that as a learning algorithmchanges the locations of the �xpoints by changing the weights, it is possible for it to crosssuch a discontinuity, making the error jump suddenly; and this remains true no matter howgradually the weights are changed.2.3 Recurrent BackpropagationPineda [39] and Alemeida [3] discovered that the error backpropagation algorithm [34, 44, 49]is a special case of a more general error gradient computation procedure. The backpropaga-tion equations are yi = �(xi) + Ii (5)zi = �0(xi)Xj wijzj + ei (6)@E@wij = yizj (7)where zi is the ordered partial derivative of E with respect to yi, E is an error metric overy(t1), and ei = @E=@yi(t1) is the simple derivative of E with respect to the �nal state ofa unit. In the original derivations of backpropagation, the weight matrix is assumed to betriangular with zero diagonal elements, which is another way of saying that the connectionsare acyclic. This ensures that a �xpoint is reached, and allows it to be computed verye�ciently in a single pass through the units. But the backpropagation equations remainvalid even with recurrent connections, assuming a �xpoint is reached.If we assume that equation (1) reaches a �xpoint, y(t1), then equation (5) must besatis�ed. And if (5) is satis�ed, then if we can �nd zi that satisfy (6), then (7) will give usthe derivatives we seek, even in the presence of recurrent connections. (For a simple task, ithas been reported [33] that reaching the precise �xpoint is not crucial to learning.)One way to compute a �xpoint for (5) is to relax to a solution. By subtracting yi fromeach side, we get 0 = �yi + �(xi) + Iiand at a �xpoint dyi=dt = 0 so the equationkdyidt = �yi + �(xi) + Iihas the appropriate �xpoints. Now we note that if �yi+�(xi)+ Ii is greater than zero thanwe could reduce its value by increasing yi, so under these circumstances dyi=dt should bepositive, so k should be greater than zero. We can choose k = 1, giving (1) as a techniquefor relaxing to a �xpoint of (5). 5

Equation (6) is linear once y is determined, so its solution is unique. Any technique forsolving a set of linear equations could be used. Since we are computing a �xpoint of (5)using the associated di�erential equation (1), it is tempting to do the same for (6) usingdzidt = �zi + �0(xi)Xj wijzj + ei: (8)These equations admit to direct analog implementation. In a real analog implementation,di�erent time constants would probably be used for (1) and (8), and under the assumptionthat the time y and z spend settling is negligible compared to the time they spend at their�xpoints and that the rate of weight change � is slow compared to the speed of presentationof new training samples, the weights would likely be updated continuously by an equationlike dwijdt = �� dEdwij = ��yizj (9)or, if a momentum term 0 < � < 1 is desired,d2wijdt2 + (1� �)dwijdt + �yizj = 0: (10)2.3.1 Simulation of an Associative NetworkWe simulated a recurrent backpropagation network learning a higher order associative task,that of associating three pieces of information: two four bit shift registers, A and B, and adirection bit, D. If D is o�, then B is equal to A. If D is on, then B is equal to A rotated onebit to the right. The task is to reconstruct one of these three pieces of information, giventhe other two.The architecture of the network is shown in �gure 2. Three groups of visible units hold A,B, and D. An undi�erentiated group of ten hidden units is fully and bidirectionally connectedto all the visible units. There are no connections between visible units. An extra unit, calleda bias unit, is used to implement thresholds. This unit has no incoming connections, and isforced to always have a value of 1 by a constant external input of 0.5. Connections go fromit to each other unit, allowing units to have biases, which are equivalent to the negative ofthe threshold, without complicating the mathematics. Inputs are represented by an externalinput of +0.5 for an on bit, |0.5 for an o� bit, and 0 for a bit to be completed by thenetwork.The network was trained by giving it external inputs that put randomly chosen patternson two of the three visible groups, and training the third group to attain the correct value.The error metric was the squared deviation of each I/O unit from its desired state, exceptthat units were not penalized for being \too correct."2 All 96 patterns were successfullylearned, except for the ones which were ambiguous, as shown in the state diagrams of�gure 4. The weights after this training, which took about 300 epochs, are shown in �gure 3.By inspection, many weights are large and decidedly asymmetric; but during training, no2A unit with external input could be pushed beyond the [0,1] bounds.6

Register A

Register B

Rotate?

Bias +0.5

Figure 2: The architecture of a network tosolve an associative version of the four bitrotation problem. Figure 3: A Hinton diagram of weightslearned by the network of �gure 2.instabilities were observed. The network consistently settled to a �xpoint within twentysimulated time units. When the network was tested on untrained completion problems, suchas reconstructing D as well as half of A and B from partially, but unambiguously, speci�ed Aand B, performance was poor. However, redoing the training with weight symmetry enforcedcaused the network to learn not only the training data but also to do well on these untrainedcompletions.Pineda and Alemeida's recurrent backpropagation learning procedure has also been suc-cessfully applied to learning weights for a relaxation procedure for dense stereo disparityproblems with transparent surfaces by Qian and Sejnowski [40]. By training on examples,they were able to learn appropriate weights instead of deriving them from simpli�ed andunrealistic analytical model of the distribution of surfaces to be encountered, as is usual.2.4 Deterministic Boltzmann MachinesThe mean �eld form of the stochastic Boltzmann Machine learning rule [38] has recentlybeen shown to descend an error functional [16]. Stochastic Boltzmann Machines themselves[1] are beyond the scope of this document; here we give only the probabilistic interpretationof MFT Boltzmann Machines, without derivation.7

Figure 4: Network state for all the cases in the four bit rotation problem. This display showsthe states of the units, arranged as in �gure 2. Each row of six shows one value for registerA. There are 24 = 16 such rows. Within each row, the three diagrams on the left show thenetwork's state when competing the direction bit, register B, and register A, unshifted. Theright three are the same, except with a shift. Note that all completions are correct exceptin the two cases where the rotation bit can not be determined from the two shift registers,namely a pattern of 0000 or 1111.In a a deterministic Boltzmann Machine, the transfer function of (1) is �(�) = (1 +e��=T)�1, where T is the temperature, which starts at a high value and is gradually loweredto a target temperature each time the network is presented with a new input; without lossof generality, we assume this target temperature to be T = 1. The weights are assumedto be symmetric and zero-diagonal. Input is handled in a di�erent way than in the otherprocedures we discuss: the external inputs Ii are set to zero, and a subset of the units, ratherthan obeying (1), have their values set externally. Such units are said to be clamped.In learning, a set of input units (states over which we will index with �) are clamped tosome values, the network is allowed to settle, and the quantitiesp�ij = <yiyj> =X� P (�)y(�)i y(�)j (11)are accumulated, where <�> denotes an average over the environmental distribution andsuperscripts denote clamping. The same procedure is then repeated, but with the outputunits (states of which we will index by �) clamped to their desired values too, yieldingp+ij = <yiyj> =X�;� P (�)y(�;�)i y(�;�)j : (12)At this point, it is the case that @G@wij = p+ij � p�ij (13)where G =X�;� P (�) log P (�j�)P�(�j�) (14)is a measure of the information theoretic di�erence between the clamped and unclamped dis-tribution of the output units given the clamped input units. P�(�j�) measures how probablethe network says � is given �, and its de�nition is beyond the scope of this document.8

Figure 5: A recurrent network is shown on the left, and a representation of that networkunfolded in time through four time steps is shown on the right.This learning rule (13) is a version of Hebb's rule in which the sign of synaptic modi�ca-tion is alternated, positive during the \waking" phase and negative during the \hallucinat-ing" phase.Even before the learning rule was rigorously justi�ed, deterministic Boltzmann Machineswere applied with success to a number of tasks [37, 38]. Although weight symmetry isassumed in the de�nition of energy which is used in the de�nition of probability, and isthus fundamental to these mathematics, it seems that in practice weight asymmetry can betolerated in large networks [12]. This makes MFT Boltzmann Machines the most biologicallyplausible of the various learning procedures we discuss, but it is di�cult to see how it wouldbe possible to extend them to learning more complex phenomena, like limit cycles or pathsthrough state space. And thus, although they are probably the best technique in theirdomain of application, we now turn our attention to procedures suitable for learning moredynamic sorts of behaviors.3 Backpropagation Through TimeThe �xpoint learning procedures discussed above are unable to learn non-�xpoint attractors,or to produce desired temporal behavior over a bounded interval, or even to learn to reachtheir �xpoints quickly. Here, we turn to learning procedures suitable for such non-�xpointsituations.Consider minimizing E(y), some functional of the trajectory taken by y between t0 andt1. For instance, E = R t1t0 (y0(t)� f (t))2dt measures the deviation of y0 from the function f ,and minimizing this E would teach the network to have y0 imitate f . Below, we derive atechnique for computing @E(y)=@wij e�ciently, thus allowing us to do gradient descent in theweights so as to minimize E. Backpropagation through time has been used to train discretetime networks to perform a variety of tasks [44, 32]. Here, we will derive the continuous timeversion of backpropagation through time, as in [36], and use it in a couple toy domains.9

y

y

1

2

tFigure 6: The in�nitesi-mal changes to y consid-ered in e1(t). y

y

1

2

tFigure 7: The in�nitesi-mal changes to y consid-ered in z1(t). i()y tj

Ti

1-1-

y t

T

jT Ti

Ti
tD D t tD

D t tD

j

D t(y t +)
j y ti D)+(t

iI t()

()x ti

1

s

iiw

s

1

x t()
jiw

wij

j

()Figure 8: A lattice representa-tion of (16).In this derivation, we take the conceptually simple approach of unfolding the continuoustime network into a discrete time network with a step of �t, applying backpropagation tothis discrete time network, and taking the limit as �t approaches zero to get a continuoustime learning rule.The derivative in (1) can be approximated withdyidt (t) � yi(t+�t)� yi(t)�t ; (15)which yields a �rst order di�erence approximation to (1),~yi(t+�t) = (1��t)~yi(t) + �t�(~xi(t)) + �tIi(t): (16)Tildes are used throughout for temporally discretized versions of continuous functions.Let us de�ne ei(t) = �E�yi(t) : (17)In the usual case E is of the form E = Z t1t0 f(y(t); t) dt (18)so ei(t) = @f (y(t); t)=@yi(t). Intuitively, ei(t) measures how much a small change to yi attime t a�ects E if everything else is left unchanged.As usual in backpropagation, let us de�ne~zi(t) = @+E@~yi(t) (19)where the @+ denotes an ordered derivative [50], with variables ordered here by time andnot unit index. Intuitively, ~zi(t) measures how much a small change to ~yi at time t a�ectsE when this change is propagated forward through time and in
uences the remainder of thetrajectory, as in �gure 7. Of course, zi is the limit of ~zi as �t ! 0. This z is the � of thestandard backpropagation \generalized � rule."10

We can use the chain rule for ordered derivatives to calculate ~zi(t) in terms of the ~zj(t+�t). According to the chain rule, we add all the separate in
uences that varying ~yi(t) hason E. It has a direct contribution of �tei(t), which comprises the �rst term of our equationfor ~zi(t). Varying ~yi(t) by d~yi(t) has an e�ect on ~yi(t + �t) of d~yi(t) (1 ��t), giving us asecond term, namely (1��t)~z(t+�t).Each weight wij makes ~yi(t) in
uence ~yj(t + �t), i 6= j. Let us compute this in
u-ence in stages. Varying ~yi(t) by d~yi(t) varies ~xj(t) by d~yi(t) wij , which varies �(~xj(t)) byd~yi(t) wij �0(~xj(t)), which varies ~yj(t+�t) by d~yi(t) wij �0(~xj(t)) �t. This gives us our thirdand �nal term, Pj wij �0(~xj(t)) �t ~zj(t+�t).Combining these,~zi(t) = �t ei(t) + (1��t)~zi(t+�t) +Xj wij�0(~xj(t))�t~zj(t+�t): (20)If we put this in the form of (15) and take the limit as �t ! 0 we obtain the di�erentialequation dzidt = zi � ei �Xj wij�0(xj)zj: (21)For boundary conditions note that by (17) and (19) ~zi(t1) = �tei(t1), so in the limit as�t! 0 we have zi(t1) = 0.Consider making an in�nitesimal change dwij to wij for a period �t starting at t. Thiswill cause a corresponding in�nitesimal change in E of yi(t)�0(xj(t))�tzj(t)dwij. Since wewish to know the e�ect of making this in�nitesimal change to wij throughout time, weintegrate over the entire interval, yielding@E@wij = Z t1t0 yi�0(xj)zjdt: (22)One can also derive (21), (22) and (26) using the calculus of variations and Lagrangemultipliers (William Skaggs, personal communication), as in optimal control theory [22]. Infact, the idea of using gradient descent to optimize complex systems was explored by controltheorists in the late 1950s. Although their mathematical techniques handled hidden units,they refrained from exploring systems with so many degrees of freedom, perhaps in fear oflocal minima.It is also interesting to note the recurrent backpropagation learning rule (section 2.3) canbe derived from these. Let Ii be held constant, assume that the network settles to a �xpoint,and let E be integrated for one time unit before t1. As t1!1, (21) and (22) reduce to therecurrent backpropagation equations (8) and (7), so in this sense backpropagation throughtime is a generalization of recurrent backpropagation.3.1 Time ConstantsIf we add a time constant Ti to each unit i, modifying (1) toTidyidt = �yi + �(xi) + Ii; (23)11

and carry these terms through the derivation of the last section, equations (21) and (22)become dzidt = 1Tizi � ei �Xj 1Tjwij�0(xj)zj: (24)and @E@wij = 1Tj Z t1t0 yi�0(xj)zjdt: (25)In order to learn these time constants rather than just set them by hand, we need tocompute @E(y)=@Ti. If we substitute �i = T �1i into (23), �nd @E=@�i with a derivationsimilar to that of (22), and substitute Ti back in we get@E@Ti = � 1Ti Z t1t0 zidyidt dt: (26)3.2 Time DelaysConsider a network in which signals take �nite time to travel over each link, so that (2) ismodi�ed to xi(t) =Xj wjiyj(t� �ji); (27)�ji being the time delay along the connection from unit j to unit i. Let us include thevariable time constants of section 3.1 as well. Surprisingly, such time delays merely addanalogous time delays to (24) and (25),dzidt (t) = 1Tizi(t)� ei(t)�Xj wij�0(xj(t+ �ij)) 1Tj zj(t+ �ij); (28)@E@wij = 1Tj Z t1t0 yi(t)�0(xj(t+ �ij))zj(t+ �ij)dt; (29)while (26) remains unchanged. If we set �ij = �t, these modi�ed equations alleviate con-cern over time skew when simulating networks of this sort, obviating any need for accuratenumerical simulations of the di�erential equations and allowing simple di�erence equationsto be used without fear of inaccurate error derivatives.Instead of regarding the time delays as a �xed part of the architecture, we can imaginemodi�able time delays. Given modi�able time delays, we would like to be able to learnappropriate values for them, which can be accomplished using gradient descent by@E@�ij = Z t1t0 zj(t)�0(xj(t))wij dyidt (t� �ij)dt: (30)We have not yet simulated networks with modi�able time delays, although there is work inprogress at another institution to do so.An interesting class of architectures would have the state of one unit modulate the timedelay along some arbitrary link in the network or the time constant of some other unit. Such12

architectures seem appropriate for tasks in which time warping is an issue, such as speechrecognition, and can certainly be accommodated by this approach.In the presence of time delays, it is reasonable to have more than one connection betweena single pair of units, with di�erent time delays along the di�erent connections. Such \timedelay neural networks" have proven useful in the domain of speech recognition [25, 26, 48].Having more than one connection from one unit to another requires us to modify our notationsomewhat; weights and time delays are modi�ed to take a single index, and we introducesome external apparatus to specify the source and destination of each connection. Thus wiis the weight on a connection between unit L(i) and unit R(i), and �i is the time delay alongthat connection. Using this notation we write (27) asxi(t) = Xj jL(j)=iwjyR(j)(t� �j): (31)Our equations would be more general if written in this notation, but readability would su�er,and the translation is quite mechanical.3.3 Some SimulationsIn the following simulations, we used networks without time delays, but with mutable timeconstants. As in the associative network of section 2.3.1, an extra input unit whose valuewas always held at 1 by a constant external input of 0.5, and which had outgoing connectionsto all other units, was used to implement biases.Using �rst order �nite di�erence approximations, we integrated the system y forwardfrom t0 to t1, set the boundary conditions zi(t1) = 0, and integrated the system z back-wards from t1 to t0 while numerically integrating zj �0(xj) yi and zi dyi=dt, thus computing@E=@wij and @E=@Ti. Since computing dzi=dt requires �0(xi), we stored it and replayedit backwards as well. We also stored and replayed yi as it is used in expressions beingnumerically integrated.We used the error functionalE = 12Xi Z t1t0 si(yi � di)2dt (32)where di(t) is the desired state of unit i at time t and si(t) is the importance of unit iachieving that state at that time. Throughout, we used �(�) = (1 + e��)�1. Time constantswere initialized to 1, weights were initialized to uniformly distributed random values between1 and �1, and the initial values yi(t0) were set to Ii(t0) + �(0). The simulator used �rstorder di�erence equations (16) and (20) with �t = 0:1.3.3.1 Exclusive OrThe network of �gure 9 was trained to solve the xor problem. Aside from the addition oftime constants, the network topology was that used by Pineda in [39]. We de�ned E =Pk 12 R 32 (y(k)o � d (k))2dt where k ranges over the four cases, d is the correct output, and yo13

input hidden outputFigure 9: The XOR network.
Figure 10: The states of the output unit in the four input cases plotted from t = 0 to t = 5after 200 epochs of learning. The error was computed only between t = 2 and t = 3.is the state of the output unit. The inputs to the net I (k)1 and I (k)2 range over the fourpossible boolean combinations in the four di�erent cases. With suitable choice of step sizeand momentum training time was comparable to standard backpropagation, averaging aboutone hundred epochs.For this task it is to the network's bene�t for units to attain their �nal values as quicklyas possible, so there was a tendency to lower the time constants towards 0. To avoid smalltime constants, which degrade the numerical accuracy of the simulation, we introduced aterm to decay the time constants towards 1. This decay factor was not used in the othersimulations described below, and was not really necessary in this task if a suitably small �twas used in the simulation. An easier, and perhaps more justi�able, approach is to simplyintroduce a minimum time constant; this was done in later simulations.What is interesting is that that even for this binary task, the network made use ofdynamic behavior. After extensive training the network behaved as expected, saturatingthe output unit to the correct value. Earlier in training, however, we occasionally (aboutone out of every ten training sessions) observed the output unit at nearly the correct valuebetween t = 2 and t = 3, but then saw it move in the wrong direction at t = 3 and end upstabilizing at a wildly incorrect value. Another dynamic e�ect, which was present in almostevery run, is shown in �gure 10. Here, the output unit heads in the wrong direction initiallyand then corrects itself before the error window. A very minor case of diving towards the14

Figure 11: Desired states d1 and d2 plotted against each other (left); actual states y1 and y2plotted against each other at epoch 1500 (center) and 12000 (right).
Figure 12: Desired states d1 and d2 plotted against each other (left); actual states y1 and y2plotted against each other at epoch 3182 (center) and 20000 (right).correct value and then moving away is seen in the lower left hand corner of �gure 10.3.3.2 A Circular TrajectoryWe trained a network with no input units, four hidden units, and two output units, all fullyconnected, to follow the circular trajectory of �gure 11. It was required to be at the leftmostpoint on the circle at t = 5 and to go around the circle twice, with each circuit taking 16units of time. The environment does not include desired outputs between t = 0 and t = 5,and during this period the network moves from its initial position at (0:5; 0:5) to the correctlocation at the leftmost point on the circular trajectory. Although the network was run forten circuits of its cycle, these overlap so closely that the separate circuits are not visible.Upon examining the network's internals, we found that it devoted three of its hiddenunits to maintaining and shaping a limit cycle, while the fourth hidden unit decayed awayquickly. Before it decayed, it pulled the other units to the appropriate starting point of thelimit cycle, and after it decayed it ceased to a�ect the rest of the network. The network useddi�erent units for the limit behavior and the initial behavior, an appropriate modularization.3.3.3 A Figure EightWe were unable to train a network with four hidden units to follow the �gure eight shapeshown in �gure 12, so we used a network with ten hidden units. Since the trajectory of theoutput units crosses itself, and the units are governed by �rst order di�erential equations,hidden units are necessary for this task regardless of the � function. Training was more15

Figure 13: The output of the rotated eight network at all the trained angles (left) and someuntrained angles (right).di�cult than for the circular trajectory, and shaping the network's behavior by graduallyextending the length of time of the simulation proved useful.From t = 0 to t = 5 the network moves in a short loop from its initial position at (0:5; 0:5)to where it ought to be at t = 5, namely (0:5; 0:5). Following this, it goes through the �gureeight shaped cycle every 16 units of time. Although the network was run for ten circuits ofits cycle to produce this graph, these overlap so closely that the separate circuits are notvisible.3.3.4 A Rotated Figure EightIn this simulation a network was trained to generate a �gure eight on its output units inprecisely the same way as in the last section, except that the �gure eight was to be rotatedabout its center by an angle � which was input to the network through two input units whichheld the coordinates of a unit vector in the appropriate direction. Eight di�erent values of�, equally spaced about the circle, were used to generate the training data. In experimentswith 20 hidden units, the network was unable to learn the task. Increasing the number ofhidden units to 30 allowed the network to learn the task, as shown on the left in �gure 13.But when the network is run with the eight input angles furthest the training angles, asshown on the right in �gure 13, generalization is poor.The task would be simple to solve using second order connections, as they would allowthe problem to be decoupled. A few units could be devoted to each of the orthogonaloscillations, and the connections could form a rotation matrix. The poor generalization ofthe network shows that it is not solving the problem in such a straightforward fashion, andsuggests that for tasks of this sort it might be better to use slightly higher order units.16

Figure 14: The output states y1 and y2 plotted against each other for a 1000 time unit run,with all the units in the network perturbed by a random amount about every 40 units oftime. The perturbations in the circle network (left) were uniform in �0:1, and in the eightnetwork (right) in �0:05.3.4 Stability and Perturbation ExperimentsWe can analytically determine the stability of the network by measuring the eigenvalues �iof Df where f is the function that maps the state of the network at one point in time to itsstate at a later time. For instance, for a network exhibiting a limit cycle one would typicallyuse the function that maps the network's state at some time in the cycle to its state at thecorresponding time in the next cycle.In an attempt to judge the stability of the limit cycles exhibited above, rather thangoing to the trouble of calculating Df , where f (y(t)) = y(t + 16), we simply modi�ed thesimulator to introduce random perturbations and observed the e�ects of these perturbationsupon the evolution of the system.3 The two output units in the unrotated �gure eight taskappear to be phase locked, as their phase relationship remains invariant even in the face ofmajor perturbations. This phase locking is unlike the solution that a human would createby analytically determining weights through decoupling the two output units and usinglinearized subnets to generate the desired oscillatory behavior.The limit cycle on the right in �gure 12 is symmetric, but when perturbations are in-troduced, as in the right of �gure 14, symmetry is broken. The portion of the limit cyclemoving from the upper left hand corner towards the lower right hand corner has diverginglines, but we do not believe that they indicate high eigenvalues and instability. The linesconverge rapidly in the upward stroke on the right hand side of the �gure, and analogous3Actually, we wouldn't care about the eigenvalues of Df per se, because we wouldn't care about pertur-bations in the direction of travel, as these e�ect only the phase. For this reason, we would want to projectthis out of the matrix before computing the eigenvalues. This e�ect is achieved automatically in our displayin �gure 14. 17

unstable behavior is not present in the symmetric downward stroke from the upper righthand corner towards the lower left. Analysis shows that the instability is caused by theinitialization circuitry being inappropriately activated; since the initialization circuitry isadapted for controlling just the initial behavior of the network, when the net must delay at(0:5; 0:5) for a time before beginning the cycle by moving towards the lower left corner, thiscircuitry is explicitly not symmetric. The diverging lines seem to be caused by this circuitrybeing activated and exerting a strong in
uence on the output units while the circuitry itselfdeactivates.3.5 Leech SimulationsLockery et al. used the techniques discussed above to �t a low level neurophysiological modelof the leech local bending re
ex to data on sensory and motor neuron activity [28, 29, 30, 31].They modi�ed the dynamic equations substantially in order to model their system at alow level, using activity levels to represent currents rather than voltages. Their trainedmodel disagreed with human intuition concerning what the synaptic strengths, and in factsigns, would be, but qualitatively matched empirical measurements of these counterintuitivesynaptic strengths.4 Other Non-�xpoint Techniques4.1 \Elman Nets"Elman [9] investigated a version of discrete backpropagation through time in which the tem-poral history is cut o�. Typically, only one or two timesteps are preserved, at the discretionof the architect. This cuto� makes backpropagation through time an online algorithm, asthe backpropagation to be done to account for the error at each point in time is done imme-diately. However, it makes the computational expense per time step scale linearly with thenumber of timesteps of history being maintained. This accuracy of the computed derivativeis smoothly traded o� against storage and computation.The real question with Elman networks is whether the contribution to the error from thehistory that has been cut o� is signi�cant. This question can only be answered relative to aparticular task. For instance, Elman [9] �nds some problems amenable to the history cuto�,but resorts to full
edged backpropagation through time for other tasks. Cleeremans et al.[6] �nd a regular language token prediction task which is di�cult for Elman nets when thetransition probabilities are equal, but �nd that breaking this symmetry allows these nets tolearn the task.4.2 The Moving Targets MethodRohwer, among others, has proposed a moving targets learning algorithm [43]. In suchalgorithms, two phases alternate. In one phase, the hidden units' targets are improved,such that if the targets are attained better performance would be achieved. In the other18

phase, the weights are modi�ed such that each unit comes closer to attaining its target. Theerror can be regarded as having two terms, one term which penalizes the units being too farfrom their targets, and another which penalizes the targets for being too far from the valuesactually attained. This technique has the appeal of decoupling temporally distant actionsduring the learning of weights, and the disadvantage of requiring the targets to be stored andupdated. In the limit, as learning rates are decreased, the moving targets method becomesequivalent to backpropagation though time.The primary disadvantage of the technique is that each pattern to be learned must haveassociated with it the targets for the hidden units, and these targets must be learned justas the weights are. This makes the technique inapplicable for online learning, in which eachpattern is seen only once.4.3 Forward PropagationAn online, exact, and stable, but computationally expensive, procedure for training fullyrecurrent networks was discovered by Robinson and Fallside [42], and later rediscoveredindependently by others [13, 52]. We can develop this technique as follows. If E is of theform of (18), we can calculate @E=@wij as follows. First apply the chain rule to E,@E@wij = Z Xk @f@yk (t) @yk@wij (t)dt = Z Xk ek(t)
ijk(t)dt (33)where
ijk = @yk=@wij: (34)These can be calculated by taking the derivative of (1) with respect to wij, yielding theauxiliary equations d
ijkdt = @fk@yk
ijk + ([j = k]yj +Xl wlk
ijl) @fk@netk : (35)Rather than integrating (33) during the simulation and then making a weight change,we can continuously update the weights according to the equationdwijdt (t) = ��Xk @g@yk (t)
ijk(t): (36)By integrating this expression between t0 and t1 under the assumption that the online weightchanges do not a�ect the trajectory taken, we can see that it is equivalent to the discreteupdate equation it replaces.Since the auxiliary quantities
ijk have only initial boundary conditions{zero at the startof time{all the computations can be carried out forward in time. Because of this, thetechnique is an online learning procedure, as the amount of time that the network will berun need not be known in advance, and no history need be stored. In addition, (35) is stableif (1) is, so the technique will not introduce numerical instabilities.19

Regretably, this technique poses a substantial computational burden, with the compu-tation of the auxiliary equations dominating. If we have n units and n2 weights, then thereare n primary state variables and only O(n2) calculations are required to update them. Butthere are n3 auxiliary variables, and they require a total of O(n4) calculations to update!Furthermore, although the primary equations could potentially be implemented directly inanalog hardware, the auxiliary equations use each weight n2 times, making analog hardwareimplementation di�cult.4.3.1 Extending Online Learning to Time Constants and DelaysWe can easily extend this online learning procedure to take account of time constants. If webegin with (23), substitute k for i, take the partial with respect to wij, and substitute in
where possible, we have a the di�erential equation for
Tk
kijdt = �
kij + �0(xk)Xl wlk
lij; (37)nearly the same as (35) except for a time constant.We can derive analogous equations for the time constants themselves; de�neqij(t) = @yi(t)@Tj ; (38)take the partial of (1) with respect to Tj, and substitute in q. This yieldsTidqijdt = �qij � dyidt + �0(xi)Xk wkiqkj (39)which can be used to update the time constants using the continuous update ruled Tidt = ��Xj ejq ji : (40)Similarly, let us derive equations for modifying the time delays of section 3.2. De�nerkij(t) = @yk(t)@�ij (41)and take the partial of (1) with respect to �ij , arriving at a di�erential equations for r,Tk drkijdt = �rkij + �0(xk)(wij dyidt (t� �ij)| {z }included if j = k�Xl wlkrlij(t� �lk)): (42)The time delays can be updated online using the continuous update equationd�ijdt = ��Xk ekrkij : (43)20

4.3.2 Faster Online TechniquesOne way to reduce the complexity of the algorithm is to simply leave out auxiliary variablesthat one has reason to believe will remain approximately zero, simply discarding the corre-sponding terms. This approach, in particular ignoring the coupling terms which relate thestates of units in one module to weights in another, has been explored by Zipser [53].Recently Toomarian and Barhen [46] used clever transformations of the adjoint equationsto derive an exact, stable variant of this forward propagation algorithm which requires only2n + n2 auxiliary variables, which can be updated in just O(n3) time. Their technique wasannounced just before this document went to press, and has not yet been simulated, butappears quite promising. If veri�ed in practice, their technique would appear to dominatethe online algorithm described above, and would become the technique of choice for onlinelearning.4.4 Feedforward Networks with StateIt is noteworthy that that the same basic mathematical technique of forward propagationcan be applied to networks with a restricted architecture, feedforward networks whose unitshave state [14, 24, 47]. This is the same as requiring the wij matrix to be triangular,but allowing non-zero diagonal terms. If we let the
 quantities be ordered derivatives, asin standard backpropagation, than this simpli�ed architecture reduces the computationalburden substantially. The elimination of almost all temporal interaction makes
ijk = 0unless i = k, leaving only O(n2) auxiliary equations, each of which can be updated withO(1) computation, for a total update burden of O(n2), which is the same as conventionalbackpropagation. This favorable computational complexity makes it of practical signi�canceeven for large feedforward recurrent networks. But these feedforward networks are outsidethe scope of this paper.5 Teacher ForcingTeacher forcing [52] consists of jamming the desired output values into units as the networkruns; thus, the teacher forces the output units to have the correct states, even as the networkruns, and hence the name. This technique is applied to discrete time, clocked networks, asonly then does the concept of changing the state of an output unit each time step makesense.The error is as usual, with the caveat that errors are to be measured before outputunits are forced, not after. Williams and Zipser report that their teacher forcing techniqueradically reduced training time for their recurrent networks, although others using teacherforcing on networks with a larger number of hidden units reported di�culties[35].21

5.1 In Continuous TimeWilliams and Zipser's application of teacher forcing to their networks is deeply dependent ondiscrete time steps, so applying teacher forcing to temporally continuous networks requiresa di�erent approach. The approach we shall take is to add some knobs that can be used tocontrol the states of the output units, and use them to keep the output units locked at theirdesired states. The error function to be minimized will measure the amount of control thatit was necessary to exert, with zero error coming only when the knobs need not be twistedat all.Let Fi = 1Ti (�yi + �(xi) + Ii) (44)so that (1) is just dyi=dt = Fi, and let us add a new forcing term fi(t) to (1),dyidt = Fi + fi: (45)Using � to denote the set of units to be forced, we will let di be the trajectory that we willforce yi to follow, for each i 2 �: So we setfi = ddidt � Fi (46)and yi(t0) = di(t0) for i 2 � and fi = 0 for i 62 �, with the consequence that yi = di fori 2 �. Now let the error functional be of the formE = Z t1t0 L(f(t); t)dt; (47)where typically L = Pi2� f2i .We can modify the derivation in section 3 for this teacher forced system. For i 2 � achange to ~yi will be canceled immediately, so taking the limit as �t ! 0 yields zi = 0.Because of this, it doesn't matter what ei is for i 2 �.We can apply (17) to calculate ei for i 62 �. The chain rule is used to calculate how achange in yi e�ects E through the fi, yieldingei = Xj2� �E�fj @fj@yior ei = Xj2� @L@fj � 1Tj�0(xj)wij (48)For i 62 � (21) and (26) are unchanged, and for j 62 � and any i (22) also remains unchanged.The only equations still required are @E=@wij for j 2 � and @E=@Ti for i 2 �. To derivethe �rst, consider the instantaneous e�ect of a small change to wij, giving@E@wij = 1Tj Z t1t0 yi�0(xj) @L@fidt: (49)22

Analogously, for i 2 � @E@Ti = � 1Ti Z t1t0 @L@fi dyidt dt: (50)We are left with a system with a number of special cases depending on whether unitsare in � or not. Interestingly, an equivalent system results if we leave (21), (22), and (26)unchanged except for setting zi = @L=@fi for i 2 � and setting all the ei = 0. It is anopen question as to whether there is some other way of de�ning zi and ei that results in thissimpli�cation.5.2 \Jordan Nets"Jordan [21] used a backpropagation network with the outputs clocked back to the inputs togenerate temporal sequences. Although these networks were used long before teacher forcing,from our perspective Jordan nets are simply a restricted class of teacher forced recurrentnetworks, in particular, discrete time networks in which the only recurrent connectionsemanate from output units. By teacher forcing these output units, no real recurrent pathsremain, so simple backpropagation through a single time step su�ces for training.The main disadvantage of such an architecture is that state to be retained by the net-work across time must to manifest in the desired outputs of the network, so new persistentinternal representations of temporal structures can not be created. For instance, it wouldbe impossible to train such networks to perform the �gure eight task of section 3.3.3. Inthe usual control theory way, this di�culty can be partially alleviated by cycling back tothe inputs not just the previous timestep's outputs, but also those from a small numberof previous timesteps. The tradeo�s between using hidden units to encapsulate temporallyhidden structure and using a temporal window of values which must contain the desiredinformation is problem dependent, and depends in essence on how long a hidden variablecan remain hidden without being manifested in the observable state variables.5.3 Continuous Time \Jordan Nets"It is easy to construct a continuous time Jordan network, in which the units' values arecontinuous in time, the output units constantly have corrected values jammed into themfrom external sources, and the only recurrent connections are from the outputs back to theinputs. Although this was done in the more general setting of fully recurrent networks, wenote in passing that the most natural teacher forced continuous time Jordan network hasno state held at individual units, and is equivalent to simply training a layered network toproduce the �rst derivative of the \output signal" given the current value of the \outputsignal" as an input. 23

technique time space online? stable? local?storing y O(m) O(sn +m) no yes yesy backwards O(m) O(m) no no yesforward propagation 1 O(n2m) O(nm) yes yes noforward propagation 2 O(nm) O(n2 +m) yes yes noTable 1: A summary of the complexity of some learning procedures for recurrent networks.In the \storing y" technique we store y as time is run forwards and replay it as we run timebackwards computing z. In \y backwards" we do not store y, instead recomputing it as timeis run backwards. \Forward propagation" 1 and 2 are the online techniques described insection 4.3. The times given are for computing the gradient with respect to one pattern.6 Summary and Conclusion6.1 Complexity ComparisonConsider a network with n units and m weights which is run for s time steps (variable gridmethods [5] would reduce s by dynamically varying �t) where s = (t1�t0)=�t. Additionally,assume that the computation of each ei(t) is O(1) and that the network is not partitioned.Under these conditions, simulating the y system takes O(m+ n) = O(m) time for eachtime step, as does simulating the z system. This means that using the technique describedin section 3.3, the entire simulation takes O(m) time per time step, the best that could behoped for. Storing the activations and weights takes O(n +m) = O(m) space, and storingy during the forward simulation to replay while simulating z backwards takes O(sn) space,so if we use this technique the entire computation takes O(sn+m) space. If we simulate ybackwards during the backwards simulation of z, the simulation requires O(n + m) space,again the best that could be hoped for. This later technique, however, is susceptible tonumeric stability problems.The online technique described in section 4.3 requires O(n2m) time each time step, andO(nm) space. The other technique alluded to in that section requires less time and space,and retains all of its online advantages, so it would appear to dominate the original technique,assuming simulations bear out its stability.These time complexity results are for sequential machines, and are summarized in table 1.Note that in this section we are concerning ourselves with how much computation it takesto obtain the gradient information. This is generally just the inner loop of a more complexalgorithm to adjust the weights, which uses the gradient information, such as a gradientdescent algorithm, or gradient descent with momentum, or conjugate gradient, or whateveris used. Experience has shown that learning in these networks has tended to be \sti�" inthe sense that the Hessian of the error with respect to the weights (the matrix of secondderivatives) tends to have a wide eigenvalue spread. One technique that has apparentlyproven useful in this particular situation is that of Robert Jacobs [20] which was applied byFang and Sejnowski to the problem described in section 3.3.3 with great success [10]. It was24

also used in the leech simulations of Lockery et al. described in section 3.5, apparently witha substantial reduction in the number of epochs required for convergence.6.2 Future WorkApplications to identi�cation and control are being explored in the author's thesis research.Signal processing and speech generation (and recognition using generative techniques) arealso domains to which this type of network might be naturally applied. Such domains maylead us to complex architectures like those discussed in section 3.2. For control domains, itseems important to have ways to force the learning towards solutions that are stable in thecontrol sense of the term. In fact, Simard, Rayzs and Victorri have developed a techniquefor learning the local maximum eigenvalue of the transfer function [45], optionally projectingout directions whose eigenvalues are not of interest. This technique has not yet been appliedin a control domain.On the other hand, we can turn the logic of section 3.4 around. Consider a di�cultconstraint satisfaction task of the sort that neural networks are sometimes applied to, suchas the traveling salesman problem [19]. Two competing techniques for such problems aresimulated annealing [23, 1] and mean �eld theory [37]. By providing a network with anoise source which can be modulated (by second order connections, say) we could see if thelearning algorithm constructs a network that makes use of the noise to generate networksthat do simulated annealing, or if pure gradient descent techniques are evolved. If a hybridnetwork evolves, its structure may give us insight into the relative advantages of these twodi�erent optimization techniques, and into the best ways to structure annealing schedules.6.3 ConclusionsRecurrent networks are often avoided because of a fear of inordinate learning times andincomprehensible algorithms and mathematics. It should be clear from the above that suchfears are unjusti�ed. Certainly there is no reason to use a recurrent network when a layeredarchitecture su�ces; but on the other hand, if recurrence is needed, there are a plethora oflearning algorithms available across the spectrum of quiescence vs. dynamics and across thespectrum of accuracy vs. complexity and across the spectrum of space vs. time and storage.6.4 AcknowledgmentsI would like to thank my advisor, David Touretzky.References[1] David H. Ackley, Geo�rey E. Hinton, and Terry J. Sejnowski. A learning algorithm forBoltzmann Machines. Cognitive Science, 9,:147{169, 1985.25

[2] Robert B. Allen and Joshua Alspector. Learning of stable states in stochastic asym-metric networks. Technical Report TM-ARH-015240, Bell Communications Research,Morristown, NJ, November 1989.[3] L. B. Almeida. A learning rule for asynchronous perceptrons with feedback in a com-binatorial environment. In Proceedings, 1st First International Conference on NeuralNetworks, volume 2, pages 609{618, San Diego, CA, June 1987. IEEE.[4] Amir F. Atiya. Learning on a general network. In Dana Z. Anderson, editor, NeuralInformation Processing Systems, pages 22{30, New York, New York, 1987. AmericanInstitute of Physics.[5] J. G. Blom, J. M. Sanz-Serna, and Jan G. Verwer. On Simple Moving Grid Methods forOne-Dimensional Evolutionary Partial Di�erential Equations. Stichting MathematischCentrum, Amsterdam, The Netherlands, 1986.[6] Axel Cleeremans, David Servan-Schreiber, and James McClelland. Finite state au-tomata and simple recurrent networks. Neural Computation, 1(3):372{381, 1989.[7] M. A. Cohen and Steven Grossberg. Stability of global pattern formation and parallelmemory storage by competitive neural networks. IEEE Transactions on Systems, Man,and Cybernetics, 13:815{826, 1983.[8] J. P. Crutch�eld and B. S. McNamara. Equations of motion from a data series. ComplexSystems, 1:417{452, 1987.[9] Je�rey L. Elman. Finding structure in time. Technical Report CRL-8801, Center forResearch in Language, UCSD, April 1988.[10] Yan Fang and Terrence J. Sejnowski. Faster learning for dynamic recurrent backprop-agation. Neural Computation, 2(3):270{273, 1990.[11] W. Freeman and S. Scarda. How brains make chaos in order to make sense of the world.Brain and Behavioral Science, November 87.[12] Conrad C. Galland and Geo�rey E. Hinton. Deterministic boltzmann learning in net-works with asymmetric connectivity. Technical Report CRG-TR-89-6, University ofToronto Department of Computer Science, 1989.[13] Michael Gherrity. A learning algorithm for analog, fully recurrent neural networks. InInternational Joint Conference on Neural Networks, volume 2, pages 643{644. IEEE,1989.[14] Marco Gori, Yoshua Bengio, and Renato De Mori. Bps: A learning algorithm forcapturing the dynamic nature of speech. In International Joint Conference on NeuralNetworks, volume 2, pages 417{423. IEEE, 1989.[15] Geo�rey E. Hinton. Learning distributed representations of concepts. In Proceedings ofthe Eighth Annual Cognitive Science Conference. Lawrence Erlbaum, 1986.26

[16] Geo�rey E. Hinton. Deterministic Boltzmann learning performs steepest descent inweight-space. Neural Computation, 1(1):143{150, 1989.[17] Geo�rey E. Hinton and Terrence J. Sejnowski. Optimal perceptual inference. In Pro-ceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages448{453, Washington, DC, June 1983. IEEE Computer Society.[18] Geo�rey E. Hinton, Terrence J. Sejnowski, and David H. Ackley. Boltzmann Ma-chines: Constraint satisfaction networks that learn. Technical Report CMU-CS-84-119,Carnegie-Mellon University, May 1984.[19] J. J. Hop�eld and D. W. Tank. `Neural' computation of decisions in optimizationproblems. Biological Cybernetics, 52:141{152, 1985.[20] Robert Jacobs. Increased rates of convergence through learning rate adaptation. Tech-nical Report COINS 87-117, University of Massachusetts, Amherst, MA 01003, 1987.[21] Michael I. Jordan. Attractor dynamics and parallelism in a connectionist sequentialmachine. In Proceedings of the 1986 Cognitive Science Conference, pages 531{546.Lawrence Erlbaum, 1986.[22] Arthur E. Bryson Jr. A steepest ascent method for solving optimum programmingproblems. Journal of Applied Mechanics, 29(2):247, 1962.[23] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by simulated anneal-ing. Science, 220:671{680, 1983.[24] Gary Kuhn. A �rst look at phonetic discrimination using connectionist models withrecurrent links. SCIMP working paper 82018, Institute for Defense Analysis, Princeton,New Jersey, April 1987.[25] Kevin Lang and Geo�rey Hinton. The development of the time-delay neural networkarchitecture for speech recognition. Technical Report CMU-CS-88-152, Department ofComputer Science, Carnegie Mellon University, November 1988.[26] Kevin J. Lang, Geo�rey E. Hinton, and Alex Waibel. A time-delay neural networkarchitecture for isolated word recognition. Neural Networks, 3(1):23{43, 1990.[27] Alan Lapedes and Robert Farber. Nonlinear signal processing using neural networks:Prediction and system modelling. Technical report, Theoretical Division, Los AlamosNational Laboratory, 1987.[28] Shawn R. Lockery, Yan Fang, and Terrence J. Sejnowski. A dynamic neural networkmodel of sensorimotor transformations in the leech. Neural Computation, 2(3):274{282,1990.[29] Shawn R. Lockery and W. B. Kristan Jr. Distributed processing of sensory informationin the leech i: Input-output relations of the local bending relex. Journal of Neuroscience,1990. 27

[30] Shawn R. Lockery and W. B. Kristan Jr. Distributed processing of sensory informationin the leech ii: Identi�cation of interneurons contributing to the local bending re
ex.Journal of Neuroscience, 1990.[31] Shawn R. Lockery, G. Wittenberg, W. B. Kristan Jr., N. Qian, and T. J. Sejnowski.Neural network analysis of distributed representations of sensory information in theleech. In David Touretzky, editor, Advances in Neural Information Processing SystemsII, pages 28{35. Morgan Kau�man, 1990.[32] Steven J. Nowlan. Gain variation in recurrent error propagation networks. ComplexSystems, 2(3):305{320, June 1988.[33] Mary B. Ottaway, Patrice Y. Simard, and Dana H. Ballard. Fixed point analysis forrecurrent neural networks. In David Touretzky, editor, Advances in Neural InformationProcessing Systems I. Morgan Kau�man, 1989.[34] David B. Parker. Learning-logic. Technical Report TR-47, MIT Center for Research inComputational Economics and Management Science, Cambridge, MA, 1985.[35] Barak Pearlmutter. Learning state space trajectories in recurrent neural networks.Technical Report CMU-CS-88-191, Department of Computer Science, Carnegie MellonUniversity, Pittsburgh, PA, 1988.[36] Barak Pearlmutter. Learning state space trajectories in recurrent neural networks.Neural Computation, 1(2):263{269, 1989.[37] C. Peterson and James R. Anderson. A mean �eld theory learning algorithm for neuralnetworks. Technical Report EI-259-87, MCC, August 1987.[38] C. Peterson and J.R. Anderson. A mean �eld theory learning algorithm for neural nets.Complex Systems, 1, 1987.[39] Fernando Pineda. Generalization of back-propagation to recurrent neural networks.Physical Review Letters, 19(59):2229{2232, 1987.[40] Ning Qian and Terrence J. Sejnowski. Learning to solve random-dot stereograms ofdense and transparent surfaces with recurrent backpropagation. In Proceedings of the1988 Connectionist Models Summer School, pages 435{443, San Mateo, CA, 1989. Mor-gan Kaufman.[41] Steve Renals and Richard Rohwer. A study of network dynamics. Journal of StatisticalPhysics, 58:825{848, June 1990.[42] A. J. Robinson and F. Fallside. Static and dynamic error propagation networks with ap-plication to speech coding. In Dana Z. Anderson, editor, Neural Information ProcessingSystems, pages 632{641, New York, New York, 1987. American Institute of Physics.28

[43] Richard Rohwer. The \moving targets" training algorithm. In D. S. Touretzky, editor,Advances in Neural Information Processing Systems 2, pages 558{565, San Mateo, CA,1990. Morgan Kaufmann.[44] David E. Rumelhart, Geo�rey E. Hinton, and R. J. Williams. Learning internal repre-sentations by error propagation. In Parallel distributed processing: Explorations in themicrostructure of cognition, volume I. Bradford Books, Cambridge, MA, 1986.[45] Patrice Y. Simard, Jean Pierre Rayzs, and Bernard Victorri. Shaping the state spacelandscape in recurrent networks. In D. S. Touretzky, editor, Advances in Neural Infor-mation Processing Systems 3. Morgan Kaufmann, 1991. To Appear.[46] N. Toomarian and J. Barhen. Adjoint-operators and non-adiabatic learning algorithmsin neural networks. In D. S. Touretzky, editor, Advances in Neural Information Pro-cessing Systems 3. Morgan Kaufmann, 1991. To Appear.[47] Tadasu Uchiyama, Katsunori Shimohara, and Yukio Tokunaga. A modi�ed leaky inte-grator network for temporal pattern recognition. In International Joint Conference onNeural Networks, volume 1, pages 469{475. IEEE, 1989.[48] Alex Waibel, T. Hanazawa, G Hinton, K. Shikano, and K. Lang. Phoneme recogni-tion using time-delay networks. IEEE Transactions on Acoustics, Speech, and SignalProcessing, 37(3):328{339, 1989.[49] Paul J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in theBehavioral Sciences. PhD thesis, Harvard University, 1974.[50] Paul J. Werbos. Generalization of backpropagation with application to a recurrent gasmarket model. Neural Networks, 1:339{356, 1988.[51] B. Widrow and M. Ho�. Adaptive switching circuits. In Western Electronic Show andConvention, Convention Record, volume 4, pages 96{104. Institute of Radio Engineers,1960.[52] Ronald J. Williams and David Zipser. A learning algorithm for continually runningfully recurrent neural networks. Technical Report ICS Report 8805, UCSD, La Jolla,CA 92093, November 1988.[53] David Zipser. Subgrouping reduces complexity and speeds up learning in recurrent net-works. In D. S. Touretzky, editor, Advances in Neural Information Processing Systems2, pages 638{641, San Mateo, CA, 1990. Morgan Kaufmann.
29

