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ABSTRACT

We present an approach to blind source separation
based on delayed correlations. This method recur-
sively splits separation space into subspaces spanned
by groups of sources. The inner loop consists of re-
peated application of a standard eigenvalue decompo-
sition. When the number of sources is large this algo-
rithm is significantly faster than joint diagonalization
of cross-covariance matrices.

1. INTRODUCTION

We present an approach to blind source separation
based on second order statistics. When each source has
a broad auto-correlation function (as is the case with
sounds or EEG/MEG signals), second order methods
can higher quality separation than methods which as-
sume the sources to be white, for instance algorithms
based on instantaneous higher-order moments.

Our method, in contrast to other techniques of this
type [2, 4, and references therein], is based on repeated
eigenvalue decomposition, and is therefore significantly
faster than previous algorithms for large problems.

2. DERIVATION

Let z(t) be an N-dimensional vector of sensor signals
which is an instantaneous linear mixture of N unknown
independent sources s;(t)

z(t) = As(t) 1)

The problem is to estimate the unknown mixing ma-
trix A, up to a permutation and scaling of its rows.

Supported in part by NSF CAREER award 97-02-311, the
National Foundation for Functional Brain Imaging, an equip-
ment grant from Intel corporation, the Albuquerque High Per-
formance Computing Center, a gift from George Cowan, and a
gift from the NEC Research Institute.

bap@cs.unm.edu

Second order methods method are based on the obser-
vation that statistically independent sources should be
uncorrelated, even if one is delayed relative to another
This means that the cross-covariance matrices

Ry = B{s(®)s(t = )"} = A, (2)

will be diagonal. The solution of the blind source sepa-
ration problem is indeterminate with respect to scaling
of the sources. We therefore assume without loss of
generality that the sources have unit variance. Taking
into account their independence, we get the identity of
the covariance matrix

Ros) = 1. (3)

We will also suppose that the raw data is presphered,
in other words that a linear transformation has already
been applied to the data to ensure that Ry = I. In
this presphered coordinate system, equations (1) and
(3) force A to be be orthogonal:

Ro(z) = ARy AT = AAT =1

The cross-covariance matrix of z can be expressed using
(2) as
R = ART(S)At = AN AT,

We can see that the mixing matrix A is a part of the
eigenvalue decomposition of R, (), which gives a way
to estimate A. However, if the correlation matrix R, (5)
has some inaccuracy, and a few of the eigenvalues are
close to each other, there can be alarge error in the esti-
mates of the corresponding eigenvectors. This problem
is addressed in [2, 4, 5] by the use of joint diagonal-
ization of a few matrices R,(,) with different delays
7. This method generally provides high quality sepa-
ration, but the computational burden increases rapidly
as the number of sources and cross-covariance matrices
grows.



We consider a different approach which gives a com-
parable quality of source separation, but is much faster
on large problems. This method is based on the fol-
lowing observation. Let A1, A2,..., Ak, Agt1,..., AN be
eigenvalues sorted in descending order. Suppose that
the gap between two of them, A, — Ag41, is large. Then
the corresponding subspaces of the eigenvectors U; =
Span{uj,uz,...,ux} and Us = Span{upii,...,un}
are estimated accurately, despite the fact that the
eigenvectors inside each group may have significant er-
rors.

Let the columns of the matrices U; and U; be the
eigenvectors of the first and the second groups above,
and let the matrix U = [U1Us] include them both. The
observed signal can be expressed as

7= [ 0] ? ] (4)

where each vector signal 24(t) corresponds to a group
of sources s*(t), possibly mixed by

2H(t) = Ais'(t), i=1,2 (5)
We can solve equation (4) with respect to z%(t), mul-
tiplying both sides by U and taking into account its
orthogonality

or

2 =Ulz 2 =Ulx

In this way we end up with two smaller separation prob-
lems (5). Each of them can be solved recursively, using
the same routine that was used for the original problem
(1), using the new correlation matrices

R,y =Ul'R, (Ui, i=1,2

This yields the following recursive method of subspace
separation.

Recursive description of the algorithm

1. Initialize the matrix B =1

2. Among the covariance matrices R; (z), Rry(a),
-+ R7\, () find the one with the maximal gap be-
tween neighboring sorted eigenvalues. This will
split the eigenvectors of this matrix into two sets,
Uy an Us.

3. Compute the matrices B; = Ul B, i = 1,2, which
map from signal space into source subspaces
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Figure 1: Separation of musical recordings taken from com-
mercial digital audio CDs (five second fragments).

4. Compute two groups of correlation matrices
which correspond to these sources subspaces:
R iy = UiTR.,_(m)U,', 1=1,2.

5. Recurse through steps 2—5 for each subspace, us-
ing R;(;) = R;(;iy and B = B;. When the di-
mension of a subspace is one, then instead of re-
cursing, put B; into a row of separation matrix

w.

6. After the recursion has terminated, all subspaces
will be of dimension one. At the point, the sepa-
ration matrix W will be fully calculated, and one
can calculate the separated sources s(t) = Wx(t)

3. COMPUTATIONAL EXPERIMENTS
WITH MUSICAL SOUND SOURCES

We digitally mixed seven 5-second fragments taken
from commercial digital audio music CDs. Each of
them included 40k samples after averaging the two
channels and down-sampling by a factor of five. See
Figure 1.

The set of delays 7 used for the cross-covariance
matrices was chosen to cover reasonably wide interval.
It was, measured in samples:

r=1,2,...,9,10,12,14,...,18,20,25,30,...,95,100

We separated the data by the method proposed
above, and for comparison by the SOBI algorithm [2],
which uses joint diagonalization [5] of the same cross-
covariance matrices.
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Figure 2: Signal to noise ratio (dB) of 7 separated
sources. With each column SOBI is on the left and
the algorithm presented here on the right.

The signal-to-noise ratio in dB for all the separated
sources is shown in Figure 2 (in each double-column
the results of SOBI are shown on the left, of our new
method on the right.) As can be seen, the accuracy
of two algorithms is comparable. Each of them took
less then 0.5 sec on a 300MHz AMD KG6-III proces-
sor. When we did a similar comparison for 122-channel
MEG data, with the same set of delays, the new algo-
rithm took 5 min, while SOBI took 10 hours. This
shows that the new algorithm scales well, as compared
to SOBL.

4. FUTURE RESEARCH

We leave one more possibility for future research. It of-
ten happens at some stage that all cross-covariance ma-
trices of the subspace under consideration have small
maximal eigenvalue gaps. This means that all the
sources in corresponding group have similar power
spectra. In this case second-order methods may be
inadequate. However, one could use other blind source
separation methods within this subspace [1, 3, 6, 7].
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