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Introduction

DiffSharp1 is an algorithmic differentiation (AD) library for the .NET ecosystem, which is targeted by the C# and
F# languages, among others. The library has been designed with machine learning applications in mind [1], allowing
very succinct implementations of models and optimization routines. DiffSharp is implemented in F# and exposes
forward and reverse AD operators as general nestable higher-order functions, usable by any .NET language. It
provides high-performance linear algebra primitives—scalars, vectors, and matrices, with a generalization to tensors
underway—that are fully supported by all the AD operators, and which use a BLAS/LAPACK backend via the highly
optimized OpenBLAS library.2 DiffSharp currently uses operator overloading, but we are developing a transformation-
based version of the library using F#’s “code quotation” metaprogramming facility [2]. Work on a CUDA-based GPU
backend is also underway.

The .NET platform and F#

DiffSharp contributes a much needed advanced AD library to the .NET ecosystem, which encompasses primarily the
languages of C#, F#, and VB in addition to others with less following, such as C++/CLI, ClojureCLR, IronScheme,
and IronPython.3 In terms of popularity, C# is the biggest among these, coming fourth (after Javascript, SQL, and
Java; and before Python, C++, and C) in the 2015 Stack Overflow developer survey;4 and again fourth (after Java, C,
and C++; and before Python, PHP, and VB) in the TIOBE index for March 2016.5. Initially developed by Microsoft,
the .NET platform has recently transformed into a fully open source endeavor overseen by the .NET Foundation, and
it is currently undergoing a transition to the open source and cross platform .NET Core project,6 supporting Linux,
OS X, FreeBSD, and Windows.

F# is a strongly typed functional language—also supporting imperative and object oriented paradigms—that
originated as an ML dialect for .NET and maintains a degree of compatibility with OCaml [2]. F# is gaining
popularity as a cross-platform functional language, particularly in the field of computational finance. Languages that
support higher-order functions are particularly appropriate for AD as the AD operators are themselves higher-order
functions. We have developed implementation strategies that allow AD to be smoothly integrated into such languages,
and allow the construction of aggressively optimizing compilers.7 F# allows DiffSharp to expose a natural API defined
by higher-order functions, which can be freely nested and curried, accept first-class functions as arguments, and return
derivative functions. The library is usable from F# and all other .NET languages. We provide an optional helper
interface for C# and other procedural languages.

Project organization and example code

The code for DiffSharp is released under the GNU Lesser General Public License (LGPL)8 and maintained in a GitHub
repository.9 The user community has been engaged in the project by raising issues on GitHub and joining in the Gitter
chat room.10

The library is structured into several namespaces. The main AD functionality is in the DiffSharp.AD namespace,
but numerical and symbolic differentiation are also provided in DiffSharp.Numerical and DiffSharp.Symbolic.
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All of these implementations share the same differentiation API (Table 1) to the extent possible, and have support
both 32-bit and 64-bit floating point. (Lower precision floating point is of particular utility in deep learning.) The
DiffSharp.Backend namespace contains the optimized computation backends (currently OpenBLAS, with work on
a CUDA backend underway). These namespaces and functionality are directly usable from C# and other .NET lan-
guages. For making the user experience even better for non-functional languages, we provide the DiffSharp.Interop

interface that wraps the AD and numerical differentiation functionality, automatically taking care of issues such as
conversions to and from FSharp.Core.FSharpFunc objects.11

Extensive documentation on the library API,12 along with tutorials and examples, are available on the project
website. The examples include machine learning applications, gradient-based optimization algorithms, clustering,
Hamiltonian Markov Chain Monte Carlo, and various neural network architectures.

Key features and contributions

Higher-order functional AD API

The fundamental elements of DiffSharp’s API are the jacobianv’ and jacobianTv’’ operations, corresponding to the
Jacobian-vector product (forward mode) and the Jacobian-transpose-vector product (reverse mode), respectively. The
library exposes differentiation functionality through a higher-order functional API (Table 1), where operators accept
functions as arguments and return derivative functions. For instance, for a function f : Rn → Rm, the jacobianTv’’

operation, with type (Rn → Rm) → Rn → (Rm × (Rm → Rn)), evaluates the function at a given point, and returns
the function value together with another function that can be repeatedly called to compute the adjoints of the inputs
using reverse mode AD. The API also includes specialized operations (e.g., hessianv for Hessian-vector product) to
cover common use cases and encourage modular code. This allows succinct implementation of differentiation-based
algorithms. For instance, Newton’s method for optimization can be simply coded as:

// eps: threshold , f: function , x: starting point

let rec argminNewton eps f x =

let g, h = gradhessian f x

if DV.l2norm g < eps then x else argminNewton eps f (x - DM.solveSymmetric h g)

Note that the caller of argminNewton need not be aware of what, if any, derivatives are being taken within it.
DiffSharp provides a fixed-point-iteration operator, with appropriate forward and reverse AD rules [5]. The forward

mode is handled by iterating until convergence of both the primal and the tangent values, while reverse mode13 uses
the “two-phases” strategy [6].

Nesting

All the AD operators can be curried or nested. For instance, making use of currying, the internal implementation of
the hessian operator in DiffSharp is simply

let inline hessian f x = jacobian (grad f) x

resulting in a forward-on-reverse AD evaluation of the Hessian of a function at a point.

In another example, we can implement z = d
dx

(
x

(
d
dy (x + y)

∣∣∣
y=1

))∣∣∣∣
x=1

in F# as

let z = diff (fun x -> x * (diff (fun y -> x + y) (D 1.))) (D 1.)

This can be written in C#, using DiffSharp.Interop, as

var z = AD.Diff(x => x * AD.Diff(y => x + y, 1), 1);

Correctness of AD in the presence of nesting requires avoiding perturbation confusion [7]. For instance, in the
above example of nested derivatives, DiffSharp correctly returns 1 (val z : D = D 1.0), while an implementation
suffering from perturbation confusion might return 2. We avoid perturbation confusion by tagging values to distinguish
nested invocations of the AD operators. See [8, 3, 4, 9] for further discussion.

Linear algebra primitives

One can automatically handle the derivatives of linear algebra primitives using an “array-of-structures” approach
where arrays of AD-enabled scalars would give correct results for derivatives, albeit with poor performance and high
memory consumption. This approach was used in DiffSharp until version 0.7, at which point the library was rewritten
using a “structure-of-arrays” approach where vector and matrix types internally hold separate arrays for their primal

11http://diffsharp.github.io/DiffSharp/csharp.html
12http://diffsharp.github.io/DiffSharp/api-overview.html
13Currently, when using reverse mode, closed-over variables in the functional argument to the fixed-point operator should be exposed by

manual closure conversion. We hope to lift this restriction soon.
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Table 1: The differentiation API for R → R, Rn → R, and Rn → Rm functions provided by the AD, numerical, and
symbolic differentiation modules. X: exact; A: approximate; F: forward AD; R: reverse AD; F-R: reverse-on-forward
AD; R-F: forward-on-reverse AD; F/R: forward AD if n ≤ m, reverse AD if n > m.

Operation Value Type signature AD Numerical Symbolic

f : R→ R diff f ′ (R→ R)→ R→ R X, F A X
diff’ (f, f ′) (R→ R)→ R→ (R× R) X, F A X
diff2 f ′′ (R→ R)→ R→ R X, F A X
diff2’ (f, f ′′) (R→ R)→ R→ (R× R) X, F A X
diff2’’ (f, f ′, f ′′) (R→ R)→ R→ (R× R× R) X, F A X

diffn f(n) N→ (R→ R)→ R→ R X, F X

diffn’ (f, f(n)) N→ (R→ R)→ R→ (R× R) X, F X

f : Rn → R grad ∇f (Rn → R)→ Rn → Rn X, R A X
grad’ (f,∇f) (Rn → R)→ Rn → (R× Rn) X, R A X
gradv ∇f · v (Rn → R)→ Rn → Rn → R X, F A
gradv’ (f,∇f · v) (Rn → R)→ Rn → Rn → (R× R) X, F A
hessian Hf (Rn → R)→ Rn → Rn×n X, R-F A X
hessian’ (f,Hf ) (Rn → R)→ Rn → (R× Rn×n) X, R-F A X
hessianv Hfv (Rn → R)→ Rn → Rn → Rn X, F-R A
hessianv’ (f,Hfv) (Rn → R)→ Rn → Rn → (R× Rn) X, F-R A
gradhessian (∇f,Hf ) (Rn → R)→ Rn → (Rn × Rn×n) X, R-F A X
gradhessian’ (f,∇f,Hf ) (Rn → R)→ Rn → (R× Rn × Rn×n) X, R-F A X
gradhessianv (∇f · v,Hfv) (Rn → R)→ Rn → Rn → (R× Rn) X, F-R A
gradhessianv’ (f,∇f · v,Hfv) (Rn → R)→ Rn → Rn → (R× R× Rn) X, F-R A
laplacian tr(Hf ) (Rn → R)→ Rn → R X, R-F A X
laplacian’ (f, tr(Hf )) (Rn → R)→ Rn → (R× R) X, R-F A X

f : Rn → Rm jacobian Jf (Rn → Rm)→ Rn → Rm×n X, F/R A X
jacobian’ (f ,Jf ) (Rn → Rm)→ Rn → (Rm × Rm×n) X, F/R A X
jacobianv Jfv (Rn → Rm)→ Rn → Rn → Rm X, F A
jacobianv’ (f ,Jfv) (Rn → Rm)→ Rn → Rn → (Rm × Rm) X, F A
jacobianT JT

f (Rn → Rm)→ Rn → Rn×m X, F/R A X
jacobianT’ (f ,JT

f ) (Rn → Rm)→ Rn → (Rm × Rn×m) X, F/R A X
jacobianTv JT

f v (Rn → Rm)→ Rn → Rm → Rn X, R
jacobianTv’ (f ,JT

f v) (Rn → Rm)→ Rn → Rm → (Rm × Rn) X, R
jacobianTv’’ (f ,JT

f (·)) (Rn → Rm)→ Rn → (Rm × (Rm → Rn)) X, R
curl ∇× f (R3 → R3)→ R3 → R3 X, F A X
curl’ (f ,∇× f) (R3 → R3)→ R3 → (R3 × R3) X, F A X
div ∇ · f (Rn → Rn)→ Rn → R X, F A X
div’ (f ,∇ · f) (Rn → Rn)→ Rn → (Rn × R) X, F A X
curldiv (∇× f ,∇ · f) (R3 → R3)→ R3 → (R3 × R) X, F A X
curldiv’ (f ,∇× f ,∇ · f) (R3 → R3)→ R3 → (R3 × R3 × R) X, F A X

and derivative values, and the library recognizes linear algebra operations such as matrix multiplication as intrinsic
functions [10]. This allows efficient vectorization of AD, where the underlying linear algebra operations can be delegated
to highly optimized BLAS/LAPACK libraries. This approach to AD with linear algebra primitives has been adopted,
for example, for the GPU-based C++ reverse AD implementation of Gremse et al. [11]. It is interesting to note that
for application domains heavily using linear algebra, such as training a neural network,14 applications typically spend
more than 90% of their running time in external BLAS/LAPACK libraries. The AD library’s role in a setting like
this is reduced to the intelligent plumbing of primal and derivative arrays to the external library.

Benchmarks

We provide benchmarks measuring the AD runtime overhead of the differentiation operations in the API.15 The code
for the benchmarks is available in the GitHub repository and we also distribute a command line benchmarking tool
with each release.16 We intend to add memory consumption figures to these benchmarks in the upcoming release.

Current work

Generalization to tensors

DiffSharp currently provides scalar (D), vector (DV), and matrix (DM) types. We are working on generalizing these to
an n-dimensional array type, with capabilities similar to those of the Torch Tensor class17 or the NumPy ndarray.18

The main motivation for this is our interest in efficiently implementing convolutional neural networks.

Source transformation

The library is currently implemented using operator overloading. One of the reasons why F# is an interesting language
for AD is its advanced metaprogramming features. The “code quotations” feature [2] allows one to programmatically

14http://diffsharp.github.io/DiffSharp/examples-neuralnetworks.html
15http://diffsharp.github.io/DiffSharp/benchmarks.html
16http://github.com/DiffSharp/DiffSharp/releases
17http://torch7.readthedocs.org/en/rtd/tensor/index.html
18http://docs.scipy.org/doc/numpy-1.10.0/reference/arrays.ndarray.html
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read and generate abstract syntax trees of functions passed as arguments. The symbolic differentiation module in
DiffSharp already makes use of code quotations. We are developing a source-transformation-based AD implementation
using this feature, which should result in both speedups and simplification of the API.

GPU backend

The backend interface that we defined while vectorizing DiffSharp allows us to plug in other computation backends
that the user can select to run their AD code. Our current work on DiffSharp includes the implementation of a
CUDA-based backend using cuBLAS for BLAS operations, custom CUDA kernels for non-BLAS operations such as
element-wise function application, and cuDNN for convolution operations.

The Hype library

DiffSharp will be maintained as a basis library providing an AD infrastructure to .NET languages, independent of the
application domain. In addition to setting up this infrastructure, we are interested in using generalized nested AD for
implementing machine learning models and algorithms. For this purpose, we started developing the Hype library19

which uses DiffSharp. Hype is in early stages of its development and is currently shared as a proof-of-concept for using
generalized AD in machine learning. It showcases how the combination of nested AD and functional programming
allows succinct implementations of optimization routines20 (e.g., stochastic gradient descent, AdaGrad, RMSProp),
and feedforward and recurrent neural networks. Upcoming GPU and tensor support in DiffSharp is particularly
relevant in this application domain, as these are essential to modern deep learning models.

Conclusions

Although DiffSharp started as a vehicle for conducting research at the intersection of AD and machine learning, it has
grown into an industrial-strength AD solution for F# in particular and the cross-platform .NET platform in general.
Its functional API, combined with the ability to freely nest constructs, allows for the convenient implementation of
highly modular AD-using software, as seen in the Hype library. We aim to finalize our work on the GPU backend and
tensors before September 2016. Readers are invited to refer to the online documentation and code for more in-depth
information.
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