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Abstract

The blind source separation problem is concerned with extraction of the
underlying source signals from a set of their linear mixtures, where the
mixing matrix is unknown. It was discovered recently, that exploiting the
sparsity of sources in an appropriate representation according to some
signal dictionary, dramatically improves the quality of separation. In this
work we use the property of multiscale transforms, such as wavelet or
wavelet packets, to decompose signals into sets of local features with
various degrees of sparsity. We use this intrinsic property for selecting
the best (most sparse) subsets of features for further separation. The per-
formance of the algorithm is verified on noise-free and noisy data. Exper-
iments with simulated signals, musical sounds and images demonstrate
significant improvement of separation quality over previously reported
results.

1 Introduction

In the blind source separation problem an N-channel sensor signal x(&) is generated by
M unknown scalar source signals s,, (&), linearly mixed together by an unknown N x M
mixing, or crosstalk, matrix A, and possibly corrupted by additive noise n(¢):

x(§) = As(&) +n(S).

The independent variable ¢ is either time or spatial coordinates in the case of images. We
wish to estimate the mixing matrix A and the M -dimensional source signal s(§).

A classical example of blind source separation is the so-called cocktail party problem,
wherein it is desirable to separate several speakers from their audio recorded mixtures. One
promising application in 2D is encountered in hyperspectral imaging, wherein images of a
body surface are taken at several wavelengths. If several chemical compounds are present



on a surface, the image at each wavelength represents a weighted sum of fingerprints of the
unknown concentrations of the various compounds, with weights determined by radiation
spectra of each compound. The problem is to recover unknown concentrations and spectra.

The assumption of statistical independence of the source components s,,,(£) leads to the
Independent Component Analysis (ICA) [1, 2]. A stronger assumption is the sparsity of
decomposition coefficients, when the sources are properly represented [3]. In particular,
let each s,, (&) have a sparse representation obtained by means of its decomposition coeffi-
cients ¢,,,; according to a signal dictionary of functions ¢, ():

sm(€) =D emii(6)- Q)

l

The functions ¢; () are called atoms or elements of the dictionary. These elements do
not have to be linearly independent, and instead may form an overcomplete dictionary,e.g.
wavelet-related dictionaries (wavelet packets, stationary wavelets, efc., see for example
[4] and references therein). Sparsity means that only a small number of coefficients c,,;
differ significantly from zero. Then, unmixing of the sources is performed in the transform
domain, i.e. in the domain of these coefficients ¢,,;. The property of sparsity often yields
much better source separation than standard ICA techniques, and can work well even with
more sources than mixtures. In many cases there are distinct groups of coefficients,wherein
sources have different sparsity properties. The key idea in this study is to select only a
subset of features (coefficients) which is best suited for separation, with respect to the
following criteria: (1) sparsity of coefficients (2) separability of sources’ features. After
this subset is formed, one uses it in the separation process, which can be accomplished by
standard ICA algorithms or by clustering. The performance of our algorithm is verified on
noise-free and noisy data. Our experiments with 1D signals and images demonstrate that
the proposed method further improves separation quality, as compared with result obtained
by using sparsity of all decomposition coefficients.

2 Motivating example: sparsity of random blocks in the Haar basis

To provide intuitive insight into the practical implications of our main idea, we first use
1D block functions, that are piecewise constant, with random amplitude and duration of
each constant piece (Figure 1). Since images are 2D piece-wise smooth functions, the
implications are similar in the 2D case.

It is known, that the Haar wavelet basis provides compact representation of such func-
tions. Let us take a close look at the Haar wavelet coefficients at different resolution levels
j=0,1,...,J. Wavelet basis functions at the finest resolution level j=J are obtained by trans-
lation of the Haar mother wavelet: p(t) = {1,ift € [0,1); —1,if ¢t € [1,2); O otherwise}.
Taking the scalar product of a function s(¢) with the wavelet ¢ ;(t — 7), we produce a fi-
nite differentiation of the function s(t) at the point ¢ = 7. This means that the number of
non-zero coefficients at the finest resolution for a block function will correspond roughly to
the number of jumps of this function. Proceeding to the next, coarser resolution level, we
have p;_;(t) = {1,ift € [0,2); —1,ift € [2,4); O otherwise}. At this level, the number
of non-zero coefficients still corresponds to the number of jumps, but the total number of
coeflicients at this level is halved , and so is the sparsity. If we further proceed to coarser
resolutions, we will encounter levels where the support of a wavelet ¢; (t) is comparable to
the typical distance between jumps in the function s(¢). In this case, most of the coefficients
are expected to be nonzero, and, therefore, sparsity will fade away.

To demonstrate how this influences accuracy of a blind source separation, we randomly
generated two block-signal sources (Figure 1, two upper plots.), and mixed them by the
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Figure 1: Random block signals (two upper) and their mixtures (two lower)

cross talk matrix

A 08321 06247
=\ —0.5547 0.7809 |

Resulting sensor signals, or mixtures, z1(t) and x2(t) are shown in the two lower plots
of Figure 1. The scatter plot of x1(t) versus z2(t) does not exhibit any visible distinct
orientations (Figure 2, left). Similarly, in the scatter plot of the wavelet coefficients at the
lowest resolution distinct orientations are hardly detectable (Figure 2, middle). In contrast,
the scatter plot of the wavelet coefficients at the highest resolution (Figure 2, right) depicts
two distinct orientations, which correspond to the columns of the mixing matrix. Indeed, if
only one source, say s1(t), was present, the sensor signals would look like

X1 (t) = ansl(t)

CL’Q(t) = aglsl(t)
and the points at the scatter plot of z2 versus z; would belong to the straight line placed
along the vector [a1q agl]T. The same thing happens, when two sources are present, but
the coefficients are sparse: at each particular index, where a coefficient of the first source
is large, there is a high probability, that the corresponding coefficient of the second source
is small, and the point at the scatter plot still lies close to the mentioned straight line.
The same arguments are valid for the second source. This explains the emergence of two
dominant orientations at the scatter plot.

3 Multinode sparse source separation

3.1 Two approaches to sparse source separation: Infomax and Clustering

There are several ways to separate sparse sources. As was pointed in the context of sparse
raw signals and in the context of sparse coefficients [3], the Bell-Sejnowski (BS) InfoMax
objective [1]

N K
min — K log| det W| + DD v(WY)r) Q)

n=1 k=1
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Figure 2: Separation of block signals: scatter plots of sensor signals (left), and of their
wavelet coefficients (middle and right). Lower columns present the normalized mean-
squared separation error (%) corresponding to the Bell-Sejnowski InfoMax, and to the
Fuzzy C-Means clustering, respectively.

is suitable for the case of equal number of sources and sensors, when the scalar function
v(-) is a smooth approximation of an absolute value function. Here W = A~! is the
unmixing matrix, to be estimated, and Y is the features’, or (new) data, matrix whose rows
are either the samples of sensor signals or their decomposition coefficients, IV is the number
of sensors, and K is the number of features, or coefficients.

Another approach to the separation of sparse sources is clustering along orientations of
data concentration in the scatter plot. This works efficiently even if the number of sources
is greater than the number of sensors. In order to determine orientations of scattered data,
we project the data points onto the surface of a unit sphere by normalizing corresponding
vectors, and then apply a standard clustering algorithm.

Our clustering procedure can be summarized as follows:

1. Form the feature matrix Y, by putting samples of the sensor signals or (subset of) their
decomposition coefficients into the corresponding rows of the matrix;

Each column yy, of the matrix Y represents a data point in an /N-dimensional space.

2. Normalize feature vectors: y, = yi/||yx|ly, in order to project data points onto the
surface of a unit sphere, where ||-||, denotes the /> norm;

Before normalization, it is reasonable to remove data points with a very small norm, since these very
likely are noisy.

3. Move data pomts to a half-sphere, e.g. by forcing the sign of the first coordinate y;. to be
positive: IF yk < 0 THEN Y = —y&;

Without this operation each set of linearly (i.e., along a line) clustered data points would yield two
clusters on opposite sides of the sphere.

4. Estimate cluster centers by using some clustering algorithm. The coordinates of these
centers will form the columns of the estimated mixing matrix A;

We used Fuzzy C-means (FCM) clustering algorithm as implemented in Matlab Fuzzy Logic Toolbox.
5. Estimate the sources: §(t) = A~ !x(t).

Note that the estimated unmixing matrix A1 obtained by using the new feature set, is applied to
the original sensor signals in order to recover sources in their original domain.

The above clustering operation is applied to various feature sets. We should stress here



that our method is not restricted to estimation of square mixing matrices, although the
estimation of sources (step 5 in the above algorithm) is more complicated in the rectangular
cases.

3.2 Results of separation of random blocks using the Haar wavelet basis.

In order to measure the separation accuracy, we normalize the original sources s,,(t) and
the estimated sources 3,,(¢). The (normalized) squared error (NSE) is then computed as
|32 — Smll2/||smll2. Resulting separation errors for block sources are presented in the
lower part of Figure 2. The largest error (13%) are obtained on the raw data, and the small-
est (below 0.7%) — on the wavelet coefficients at the highest resolution, which have the best
sparsity. Using all wavelet coefficients yields intermediate sparsity and performance.

3.3 Adaptive selection of sparse subsets of coefficients in wavelet packet tree.

Our choice of a particular wavelet basis and of the sparsest subset of coefficients was obvi-
ous in the above example: it was based on knowledge of the structure of piecewise constant
signals. For sources having oscillatory components (like sounds or images with textures),
other systems of basis functions, for example, wavelet packets, might be more appropriate.
The wavelet packet library consists of the triple-indexed family of functions:

Piiq(t) =220, (2t — i), ji € Z, g€ N. 3)

where j, i are the scale and shift parameters, respectively, and ¢ is the frequency parameter.
[Roughly speaking, ¢ is proportional to the number of oscillations of a mother wavelet
¢4(t)]. These functions form a binary tree whose nodes are indexed by two indices: the

depth of the level j and the number of node ¢ = 0, 1,2, 3, ..., 271 at the specified level ;.

When signals have a complex nature, it is difficult to decide in advance which nodes con-
tain the sparsest sets of coefficients. That is why we use the following simple adaptive
approach. First, for every node of the tree, we apply our clustering algorithm, and compute
a measure of clusters’ distortion. In our experiments we used a standard global distortion:
the mean squared distance of data points to the centers of their own (closest) clusters. Sec-
ond, we choose a few best nodes with the minimal distortion, combine their coefficients
into one data set, and apply a separation algorithm (clustering or Infomax) to these data.

4 Experimental results

The proposed blind separation method based on the wavelet-packet approach, was eval-
uated by using several types of signals. We have already discussed the relatively simple
example of a random block signal. The second type of signal is a frequency modulated
(FM) sinusoidal signal. The carrier frequency is modulated by either a sinusoidal function
(FM signal) or by random blocks (BFM signal). The third type is a musical recording of
flute sounds. Finally, we apply our algorithm to images. An example of such images is
presented in the left part of Figure 3. Source images and their mixtures are shown at the
upper two sets of plots, and the estimated images are shown in the lower two plots.

In order to compare accuracy of our method with that attainable by other methods, we
form the following feature sets: (1) raw data, (2) Short Time Fourier Transform (STFT)
coeflicients for 1D signals, and Discrete Cosine Transform (DCT) coefficients for images,
(3) Wavelet packet coefficients at the *best’ nodes, using various mother wavelets.

On the right part of Figure 3 we show an example of scatter plots of the wavelet packet
coeflicients obtained at different nodes of the wavelet packet tree. The upper left scatter
plot, marked with *C’, corresponds to the complete set of coefficients at all nodes. The



rest are the scatter plots of sets of coefficients indexed on a wavelet packet tree. Generally
speaking, the more distinct the two dominant orientations appear on these plots, the more
precise is the estimation of the mixing matrix, and, therefore, the better is the quality of
separation. Note, that only two nodes, co2 and cos, show clear orientations. These nodes
will most likely be selected by the algorithm for further estimation process.

Figure 3: Left: two source images (upper pair), their mixtures (middle pair) and estimated
images (lower pair). Right: scatter plots of the wavelet packet (WP) coefficients of mixtures
of images; subsets are indexed on the WP tree.

1D Signals | raw data | STFT | WP
Blocks 31.89 1631 | 0.43

BFM 49.81 8.17 | 4.48
FM 50.57 5.66 | 4.13
Flutes 12.18 536 | 3.93

raw data | DCT | WP
Images 22.11 19.11 | 6.04

Table 1: Experimental results: normalized mean-squared separation error (%) for noise-
free signals and images, applying the FCM separation to raw data and decomposition coef-
ficients in various domains. In the case of wavelet packets (WP) the best nodes selected by
our algorithm were used.

| SNR [dB] [cc [ 12 [ 11 [ 10 | 8 |
Mixtures of images w. white gaussian noise | 2.05 | 438 | 7.12 | 12.76 | 41.70
Mixtures of images w. salt&pepper noise 2051 2.17 | 293 | 490 | 14.61

Table 2: Performance of the algorithm in presence of various sources of noise in mixtures:
normalized mean-squared separation error (%) for images, applying our adaptive approach
along with the BS InfoMax separation.



Table 1 summarizes results of experiments in which we applied our algorithm along with
the FCM separation to each noise-free feature set and compared normalized mean-squared
errors (NMSE). From Table 1 it is clear that using our adaptive ’best’ nodes method out-
performs all other feature sets for each type of signal. Similar improvement was achieved
by using our algorithm along with the BS InfoMax separation, which provided even better
results for images.

In order to verify the performance of our method in presence of noise, we added various
noise (white gaussian and salt&pepper) to mixtures of images at various signal-to-noise
ratios (SNR). Table 2 summarizes these experiments in which we applied our algorithm
along with the BS InfoMax separation. Our algorithm provides reasonable separation qual-
ity for SNR’s of about 10 dB and higher in the case of salt&pepper noise, and for SNR’s of
about 11 dB and higher in the case of white gaussian noise. More experimental results, as
well as parameters of simulations, can be found in [7].

5 Conclusions

Experiments with both one- and two-dimensional simulated and natural signals demon-
strate that sparse representations improve the efficiency of blind source separation. The pro-
posed method improves the separation quality by utilizing the structure of signals, wherein
several subsets of the wavelet packet coefficients have significantly better sparsity and sepa-
rability than others. In this case, scatter plots of these coefficients show distinct orientations
each of which specifies a column of the mixing matrix. Further, projecting points appearing
on the scatter plot onto the surface of a unit sphere, facilitates the separation into distinct
data clusters. We choose the *good subsets’ according to the global distortion adopted as
a measure of cluster quality. Finally, we combine together coefficients from the best cho-
sen subsets and restore the mixing matrix using only this new subset of coefficients by the
Infomax algorithm or clustering. This yields significantly better experimental results than
those obtained by using standard Infomax and clustering approaches.
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