Denotational
Semantics

A METHODOLOGY FOR LANGUAGE DEVELOPMENT

David A. Schmidt

Copyright notice: Copyright© 1997 by David A. Schmidt. Permission to reproduce this
material must be obtained from the author.

Author’s address:David Schmidt, Department of Computing and Information Sciences, 234
Nichols Hall, Kansas State University, Manhattan, KS 66506. schmidt@cis.ksu.edu

Preface

Denotational semantics is a methodology for giving mathematical meaning to programming
languages and systems. It was developed by Christopher Strachey’s Programming Research
Group at Oxford University in the 1960s. The method combines mathematical rigor, due to the
work of Dana Scott, with notational elegance, due to Strachey. Originally used as an analysis
tool, denotational semantics has grown in use as a tool for language design and implementa-
tion.

This book was written to make denotational semantics accessible to a wider audience and
to update existing texts in the area. | have presented the topic from an engineering viewpoint,
emphasizing the descriptional and implementational aspects. The relevant mathematics is also
included, for it gives rigor and validity to the method and provides a foundation for further
research.

The book is intended as a tutorial for computing professionals and as a text for university
courses at the upper undergraduate or beginning graduate level. The reader should be
acquainted with discrete structures and one or more general purpose programming languages.
Experience with an applicative-style language such as LISP, ML, or Scheme is also helpful.

CONTENTS OF THE BOOK

The Introduction and Chapters 1 through 7 form the core of the book. The Introduction pro-
vides motivation and a brief survey of semantics specification methods. Chapter 1 introduces
BNF, abstract syntax, and structural induction. Chapter 2 lists those concepts of set theory
that are relevant to semantic domain theory. Chapter 3 covers semantic domains, the value sets
used in denotational semantics. The fundamental domains and their related operations are
presented. Chapter 4 introduces basic denotational semantics. Chapter 5 covers the semantics
of computer storage and assignment as found in conventional imperative languages. Nontradi-
tional methods of store evaluation are also considered. Chapter 6 presents least fixed point
semantics, which is used for determining the meaning of iterative and recursive definitions.
The related semantic domain theory is expanded to include complete partial orderings;
“predomains” (complete partial orderings less “bottom” elements) are used. Chapter 7 cov-
ers block structure and data structures.

Chapters 8 through 12 present advanced topics. Tennent's analysis of procedural abstrac-
tion and general binding mechanisms is used as a focal point for Chapter 8. Chapter 9 analyzes
forms of imperative control and branching. Chapter 10 surveys techniques for converting a
denotational definition into a computer implementation. Chapter 11 contains an overview of
Scott’s inverse limit construction for building recursively defined domains. Chapter 12 closes
the book with an introduction to methods for understanding nondeterminism and concurrency.

Throughout the book | have consistently abused the noun “access,” treating it as a verb.
Also, “iff” abbreviates the phrase “if and only if.”

viii

Preface ix

ORGANIZATION OF A COURSE

The book contains more material than what can be comfortably covered in one term. A course
plan should include the core chapters; any remaining time can be used for Chapters 8 through
12, which are independent of one another and can be read in any order. The core can be han-
dled as follows:

Present the Introduction first. You may wish to give a one lecture preview of Chapter 4.
A preview motivates the students to carefully study the material in the background
Chapters 1 through 3.

Cover all of Chapters 1 and 2, as they are short and introduce crucial concepts.

Use Chapter 3 as a “reference manual.” You may wish to start at the summary Section
3.5 and outline the structures of semantic domains. Next, present examples of semantic
algebras from the body of the chapter.

Cover all of Chapter 4 and at least Sections 5.1 and 5.4 from Chapter 5. If time allows,
cover all of Chapter 5.

Summarize Chapter 6 in one or two lectures for an undergraduate course. This summary
can be taken from Section 6.1. A graduate course should cover all of the chapter.

Cover as much of Chapter 7 as possible.

REFERENCES AND EXERCISES

Following each chapter is a short list of references that suggests further reading. Each refer-
ence identifies the author and the year of publication. Le#tgebs c,and so on, are used if the
author has multiple references for a year. The references are compiled in the bibliography in
the back of the book. | have tried to make the bibliography current and complete, but this
appears to be an impossible task, and | apologize to those researchers whose efforts | have
unintentionally omitted.

Exercises are provided for each chapter. The order of a chapter’'s exercises parallels the
order of presentation of the topics in the chapter. The exercises are not graded according to
difficulty; an hour’s effort on a problem will allow the reader to make that judgment and will
also aid development of intuitions about the significant problems in the area.

ACKNOWLEDGEMENTS

Many people deserve thanks for their assistance, encouragement, and advice. In particular, |
thank Neil Jones for teaching me denotational semantics; Peter Mosses for answering my
questions; Robin Milner for allowing me to undertake this project while under his employ;
Paul Chisholm for encouraging me to write this book and for reading the initial draft; Allen
Stoughton for many stimulating discussions; Colin Stirling for being an agreeable office mate;
and my parents, family, and friends in Kansas, for almost everything else.

John Sulzycki of Allyn and Bacon deserves special thanks for his interest in the project,

X Preface

and Laura Cleveland, Sue Freese, and Jane Schulman made the book’s production run
smoothly. The reviewers Jim Harp, Larry Reeker, Edmond Schonberg, and Mitchell Wand
contributed numerous useful suggestions. (I apologize for the flaws that remain in spite of
their efforts.) Those instructors and their students who used preliminary drafts as texts deserve
thanks; they are Jim Harp, Austin Melton, Colin Stirling, David Wise, and their students at the
universities of Lowell, Kansas State, Edinburgh, and Indiana, respectively. My students at
Edinburgh, lowa State, and Kansas State also contributed useful suggestions and corrections.

Finally, the text would not have been written had | not been fortunate enough to spend
several years in Denmark and Scotland. | thank the people at Aarhus University, Edinburgh
University, Heriot-Watt University, and The Fiddler's Arms for providing stimulating and
congenial environments.

| would be pleased to receive comments and corrections from the readers of this book.

Contents

Preface viii

Chapter 0
INTRODUCTION

Methods for Semantics Specification 2
Suggested Readings 3

Chapter 1
SYNTAX

1.1 Abstract Syntax Definitions 9
1.2 Mathematical and Structural Induction
Suggested Readings 15

Exercises 15

Chapter 2
SETS, FUNCTIONS, AND DOMAINS

12

2.1 Sets 17
2.1.1 Constructions on Sets 18
2.2 Functions 20
2.2.1 Representing Functions as Sets

21

2.2.2 Representing Functions as Equations

2.3 Semantic Domains 25

2.3.1 Semantic Algebras 25
Suggested Readings 27
Exercises 27

Chapter 3
DOMAIN THEORY |: SEMANTIC ALGEBRAS

3.1 Primitive Domains 30
3.2 Compound Domains 34
3.2.1 Product 34
3.2.2 Disjoint Union 35
3.2.3 Function Space 39
3.2.4 Lifted Domains and Strictness

24

42

17

30

iv Contents

3.3 Recursive Function Definitions 44
3.4 Recursive Domain Definitions 46
3.5 Summary 46

Suggested Readings 48

Exercises 48

Chapter 4
BASIC STRUCTURE OF DENOTATIONAL DEFINITIONS

4.1 The Valuation Function 54

4.2 Format of a Denotational Definition 57
4.3 A Calculator Language 59

Suggested Readings 63

Exercises 63

Chapter 5
IMPERATIVE LANGUAGES

5.1 A Language with Assignment 66
5.1.1 Programs are Functions 72
5.2 AnInteractive File Editor 73
5.2.1 Interactive Input and Partial Syntax 78

5.3 A Dynamically Typed Language with Input and Output

5.4 Altering the Properties of Stores 82

5.4.1 Delayed Evaluation 82

5.4.2 Retaining Multiple Stores 86

5.4.3 Noncommunicating Commands 87
Suggested Readings 88
Exercises 88

Chapter 6

DOMAIN THEORY Il: RECURSIVELY DEFINED FUNCTIONS

6.1 Some Recursively Defined Functions 95
6.2 Partial Orderings 98
6.3 Continuous Functions 102
6.4 LeastFixed Points 103
6.5 Domains are Cpos 104
6.6 Examples 109
6.6.1 Factorial Function 109
6.6.2 Copyout Function 110
6.6.3 Double Recursion 111
6.6.4 Simultaneous Definitions 111

54

66

94

6.7

6.6.5 The While-Loop 112
6.6.6 Soundness of Hoare’s Logic 115
Reasoning about Least Fixed Points 117

Suggested Readings 119
Exercises 120

Chapter 7
LANGUAGES WITH CONTEXTS

7.1

7.2

7.3

A Block-Structured Language 127

7.1.1 Stack-Managed Storage @ 134
7.1.2 The Meanings of Identifiers 136
An Applicative Language 137

7.2.1 Scoping Rules 140

7.2.2 Self-Application 143

7.2.3 Recursive Declarations 145
Compound Data Structures 148

Suggested Readings 154
Exercises 154

Chapter 8
ABSTRACTION, CORRESPONDENCE, AND QUALIFICATION

8.1
8.2
8.3

8.4
8.5

Abstraction 161

8.1.1 Recursive Bindings 164
Parameterization 165

8.2.1 Polymorphism and Typing 167
Correspondence 170

Quialification 171

Orthogonality 173

Suggested Readings 174
Exercises 174

Chapter 9
CONTROL AS A SEMANTIC DOMAIN

9.1

9.2
9.3
9.4
9.5

Continuations 178

9.1.1 Other Levels of Continuations 181
Exception Mechanisms 182
Backtracking Mechanisms 183
Coroutine Mechanisms 183

Unrestricted Branching Mechanisms 187

125

160

178

vi Contents

9.6 The Relationship between Direct and Continuation Semantics
Suggested Readings 195
Exercises 195

Chapter 10
IMPLEMENTATION OF DENOTATIONAL DEFINITIONS

10.1 A General Method of Implementation 199
10.1.1 The SIS and SPS Systems 200
10.2 Static Semantics Processing 201
10.3 The Structure of the Evaluator 203
10.3.1 A Stack-Based Evaluator 204
10.3.2 PSP and Appel’'s System 208
10.4 Combinator-Based Semantic Notations 209
10.4.1 The Plumb and CERES Systems 211
10.5 Transformations on the Semantic Definition 212
10.5.1 First-Order Data Objects 212
10.5.2 Global Variables 214
10.5.3 Control Structures 217
10.6 Implementation of Continuation-Based Definitions 218
10.6.1 The CGP and VDM Methods 222
10.7 Correctness of Implementation and Full Abstraction 223
Suggested Readings 225
Exercises 226

Chapter 11
DOMAIN THEORY llIl: RECURSIVE DOMAIN SPECIFICATIONS

11.1 Reflexive Domains Have Infinite Elements 230
11.2 The Inverse Limit Construction 234
11.3 Applications 241
11.3.1 Linear Lists 242
11.3.2 Self-Applicative Procedures 243
11.3.3 Recursive Record Structures 244
Suggested Readings 245
Exercises 245

Chapter 12
NONDETERMINISM AND CONCURRENCY

193

12.1 Powerdomains 251
12.2 The Guarded Command Language 251

199

230

250

12.3 Concurrency and Resumption Semantics

12.4 An Alternative Semantics for Concurrency

12.5 The Powerdomain Structure 265
12.5.1 Discrete Powerdomains 266
12.5.2 General Powerdomains 268

Suggested Readings 274

Exercises 274

Bibliography 217

254
258

Vii

Introduction

Any notation for giving instructions is a programming language. Arithmetic notation is a pro-
gramming language; so is Pascal. The input data format for an applications program is also a
programming language. The person who uses an applications program thinks of its input com-
mands as a language, just like the program’s implementor thought of Pascal when he used it to
implement the applications program. The person who wrote the Pascal compiler had a similar
view about the language used for coding the compiler. This series of languages and viewpoints
terminates at the physical machine, where code is converted into action.
A programming language has three main characteristics:

=

Syntax the appearance and structure of its sentences.

2. Semantics the assignment of meanings to the sentences. Mathematicians use meanings
like numbers and functions, programmers favor machine actions, musicians prefer audi-
ble tones, and so on.

3. Pragmatics the usability of the language. This includes the possible areas of application

of the language, its ease of implementation and use, and the language’s success in

fulfilling its stated goals.

Syntax, semantics, and pragmatics are features of every computer program. Let's con-
sider an applications program once again. It igracessorfor its input language, and it has
two main parts. The first part, the input checker module (ibese), reads the input and
verifies that it has the proper syntax. The second part, the evaluation module, evaluates the
input to its corresponding output, and in doing so, defines the input’'s semantics. How the sys-
tem is implemented and used are pragmatics issues.

These characteristics also apply to a general purpose language like Pascal. An interpreter
for Pascal also has a parser and an evaluation module. A pragmatics issue is that the interpreta-
tion of programs is slow, so we might prefer a compiler instead. A Pascal compiler transforms
its input program into a fast-running, equivalent version in machine language.

The compiler presents some deeper semantic questions. In the case of the interpreter, the
semantics of a Pascal program is defined entirely by the interpreter. But a compiler does not
define the meaning— jtireservethe meaning of the Pascal program in the machine language
program that it constructs. The semantics of Pascal is an issue independent of any particular
compiler or computer. The point is driven home when we implement Pascal compilers on two
different machines. The two different compilers preserve the same semantics of Pascal.
Rigorous definitions of the syntax and semantics of Pascal are required to verify that a com-
piler is correctly implemented.

The area of syntax specification has been thoroughly studied, and Backus-Naur form
(BNF) is widely used for defining syntax. One of reasons the area is so well developed is that
a close correspondence exists between a language’'s BNF definition and its parser: the
definition dictates how to build the parser. Indeed, a parser generator system maps a BNF
definition to a guaranteed correct parser. In addition, a BNF definition provides valuable docu-
mentation that can be used by a programmer with minimal training.

Semantics definition methods are also valuable to implementors and programmers, for

they provide:
1

2 Introduction

1. A precise standard for a computer implementation. The standard guarantees that the
language is implemented exactly the same on all machines.

2. Useful user documentation. A trained programmer can read a formal semantics definition
and use it as a reference to answer subtle questions about the language.

3. Atool for design and analysis. Typically, systems are implemented before their designers
study pragmatics. This is because few tools exist for testing and analyzing a language.
Just as syntax definitions can be modified and made error-free so that fast parsers result,
semantic definitions can be written and tuned to suggest efficient, elegant implementa-
tions.

4. Input to a compiler generator. A compiler generator maps a semantics definition to a
guaranteed correct implementation for the language. The generator reduces systems
development to systems specification and frees the programmer from the most mundane
and error prone aspects of implementation.

Unfortunately, the semantics area is not as well developed as the syntax area. This is for
two reasons. First, semantic features are much more difficult to define and describe. (In fact,
BNF’s utility is enhanced because those syntactic aspects thahitotdescribe are pushed
into the semantics area! The dividing line between the two areas is not fixed.) Second, a stan-
dard method for writing semantics is still evolving. One of the aims of this book is to advocate
one promising method.

METHODS FOR SEMANTICS SPECIFICATION

Programmers naturally take the meaning of a program to be the actions that a machine takes
upon it. The first versions of programming language semantics used machines and their
actions as their foundation.

The operational semanticeiethod uses an interpreter to define a language. The meaning
of a program in the language is the evaluation history that the interpreter produces when it
interprets the program. The evaluation history is a sequence of internal interpreter
configurations.

One of the disadvantages of an operational definition is that a language can be understood
only in terms of interpreter configurations. No machine-independent definition exists, and a
user wanting information about a specific language feature might as well invent a program
using the feature and run it on a real machine. Another problem is the interpreter itself: it is
represented as an algorithm. If the algorithm is simple and written in an elegant notation, the
interpreter can give insight into the language. Unfortunately, interpreters for nontrivial
languages are large and complex, and the notation used to write them is often as complex as
the language being defined. Operational definitions are still worthy of study because one need
only implement the interpreter to implement the language.

The denotational semanticsiethod maps a program directly to its meaning, called its
denotation. The denotation is usually a mathematical value, such as a number or a function.
No interpreters are usedyaluation functiormaps a program directly to its meaning.

A denotational definition is more abstract than an operational definition, for it does not

Methods for Semantics Specificatiord

specify computation steps. Its high-level, modular structure makes it especially useful to
language designers and users, for the individual parts of a language can be studied without
having to examine the entire definition. On the other hand, the implementor of a language is
left with more work. The numbers and functions must be represented as objects in a physical
machine, and the valuation function must be implemented as the processor. This is an ongo-
ing area of study.

With the axiomatic semanticeethod, the meaning of a program is not explicitly given
at all. Instead,properties about language constructs are defined. These properties are
expressed with axioms and inference rules from symbolic logic. A property about a program
is deduced by using the axioms and rules to construct a formal proof of the property. The
character of an axiomatic definition is determined by the kind of properties that can be proved.
For example, a very simple system may only allow proofs that one program is equal to
another, whatever meanings they might have. More complex systems allow proofs about a
program’s input and output properties.

Axiomatic definitions are more abstract than denotational and operational ones, and the
properties proved about a program may not be enough to completely determine the program’s
meaning. The format is best used to provide preliminary specifications for a language or to
give documentation about properties that are of interest to the users of the language.

Each of the three methods of formal semantics definition has a different area of applica-
tion, and together the three provide a set of tools for language development. Given the task of
designing a new programming system, its designers might first supply a list of properties that
they wish the system to have. Since a user interacts with the system via an input language, an
axiomatic definition is constructed first, defining the input language and how it achieves the
desired properties. Next, a denotational semantics is defined to give the meaning of the
language. A formal proof is constructed to show that the semantics contains the properties that
the axiomatic definition specifies. (The denotational definition madelof the axiomatic
system.) Finally, the denotational definition is implemented using an operational definition.
Thesecomplementary semantic definitiooba language support systematic design, develop-
ment, and implementation.

This book emphasizes the denotational approach. Of the three semantics description
methods, denotational semantics is the best format for precisely defining the meaning of a pro-
gramming language. Possible implementation strategies can be derived from the definition as
well. In addition, the study of denotational semantics provides a good foundation for under-
standing many of the current research areas in semantics and languages. A good number of
existing languages, such as ALGOL60, Pascal, and LISP, have been given denotational
semantics. The method has also been used to help design and implement languages such as
Ada, CHILL, and Lucid.

SUGGESTED READINGS

Surveys of formal semantics: Lucas 1982; Marcotty, Ledgaard, & Bochman 1976; Pagan
1981

4 Introduction

Operational semantics: Ollengren 1974; Wegner 1972a, 1972b
Denotational semantics: Gordon 1979; Milne & Strachey 1976; Stoy 1977; Tennent 1976
Axiomatic semantics: Apt 1981; Hoare 1969; Hoare & Wirth 1973
Complementary semantics definitions: deBakker 1980; Donohue 1976; Hoare & Lauer
1974
Languages with denotational semantics definitions:SNOBOL: Tennent 1973
LISP: Gordon 1973, 1975, 1978; Muchnick & Pleban 1982
ALGOLG60: Henhapl & Jones 1982; Mosses 1974
Pascal: Andrews & Henhapl 1982; Tennent 1977a
Ada: Bjorner & Oest 1980; Donzeau-Gouge 1980; Kini, Martin, & Stoughton 1982
Lucid: Ashcroft & Wadge 1982
CHILL: Branquart, Louis, & Wodon 1982
Scheme: Muchnick & Pleban 1982

Chapter 1

Syntax

A programming language consists of syntax, semantics, and pragmatics. We formalize syntax
first, because only syntactically correct programs have semantics. A syntax definition of a
language lists the symbols for building words, the word structure, the structure of well formed
phrases, and the sentence structure. Here are two examples:

1. Arithmetic The symbols include the digits from 0 to 9, the arithmetic operators-#+,

x, and /, and parentheses. The numerals built from the digits and the operators are the
words. The phrases are the usual arithmetic expressions, and the sentences are just the
phrases.

2. A Pascal-like programming languageThe symbols are the letters, digits, operators,
brackets, and the like, and the words are the identifiers, numerals, and operators. There
are several kinds of phrases: identifiers and numerals can be combined with operators to
form expressions, and expressions can be combined with identifiers and other operators
to form statements such as assignments, conditionals, and declarations. Statements are
combined to form programs, the “sentences” of Pascal.

These examples point out that languages have internal structure. A notation known as
Backus-Naur fornfBNF) is used to precisely specify this structure.

A BNF definition consists of a set of equations. The left-hand side of an equation is
called anonterminaland gives the name of a structural type in the language. The right-hand
side lists the forms which belong to the structural type. These forms are built from symbols
(calledterminal symbolsand other nonterminals. The best introduction is through an exam-
ple.

Consider a description of arithmetic. It includes two equations that define the structural
types ofdigit andoperator:

<digit>::=0|1|2|3|4|5|6]|7]8]9
<operator> =+ | x|/

Each equation defines a group of objects with common structure. To be a digit, an object must
bea Ooralora?2ora 3 ... ora 9. The name to the left of the equals sign (::=) is the
nonterminal name <digit>, the name of the structural type. Symbols such as 0, 1, and +
are terminal symbols. Read the vertical bar (|) as “or.”

Another equation defines the numerals, the words of the language:

<numeral> ::= <digit> | <digit> <numeral>

The name <digit> comes in handy, for we can succinctly state that an object with numeral

structure must either have digit structure .or . or what? The second option says that a

numeral may have the structure of a digit grouped (concatenated) with something that has a

known numeral structure. This clever use of recursion permits us to define a structural type
5

6 Syntax

that has an infinite number of members.
The final rule is:

<expression> ::= <numeral> | (<expression>)
| <expression> <operator> <expression>

An expression can have one of three possible forms: it can be a numeral, or an expression
enclosed in parentheses, or two expressions grouped around an operator.

The BNF definition of arithmetic consists of these four equations. The definition gives a
complete and precise description of the syntax. An arithmetic expression such+@s1 41
is drawn as alerivation tree so that the structure is apparent. Figure 1.1 shows the derivation
tree for the expression just mentioned.

We won't cover further the details of BNF; this information can be found in many other
texts. But there is one more notion that merits discussion. Consider the derivation trees in Fig-
ures 1.2 and 1.3 for the expressiork 2+ 1. Both are acceptable derivation trees. It is puz-
zling that one expression should possés® trees. A BNF definition that allows this
phenomenon is calledmbiguous. Since there are two allowable structures fox 2+ 1,
which one is proper? The choice is important, for real life compilers (and semantic definitions)
assign meanings based on the structure. In this example, the two trees suggest a choice
between multiplying four by two and then adding one versus adding two and one and then
multiplying by four.

Figure 1.1
<expression>
<expression> <operator> <expression>
<expression> <numeral>
<expression><operator> <expression> <digit>
<numeral> <numeral>
<digit> <digit> <numeral>
<digit>

(4 + 2 4) - 1

Syntax 7

Figure 1.2
<expression>
<expression> <operator> <expression>
<expression> <operator> <expression> <numeral>
<numeral> <numeral> <digit>
<digit> <digit>
4 X 2 + 1
Figure 1.3
<expression>
<expression> <operator> <expression>
<numeral> <expression> <operator> <expression>
<digit> <numeral> <numeral>
<digit> <digit>
4 X 2 + 1

Ambiguous BNF definitions can often be rewritten into an unambiguous form, but the
price paid is that the revised definitions contain extra, artificial levels of structure. An unambi-
guous definition of arithmetic reads:

<expression> ::= <expression> <lowop> <term> | <term>
<term> ::= <term> <highop> <factor> | <factor>

<factor> ::= <numeral> | (<expression>)

<lowop> ::=+ |-

8 Syntax

<highop> ::=x |/

(The rules for <numeral> and <digit> remain the same.) This definition solves the ambiguity
problem, and now there is only one derivation tree far24 1, given in Figure 1.4. The tree

is more complex than the one in Figure 1.2 (or 1.3) and the intuitive structure of the expres-
sion is obscured. Compiler writers further extend BNF definitions so that fast parsers result.
Must we use these modified, complex BNF definitions when we study semantics? The answer
iS no.

We claim that the derivation trees are theal sentences of a language, and strings of
symbols are just abbreviations for the trees. Thus, the strir@+41 is an ambiguous abbre-
viation. The original BNF definition of arithmetic is adequate for specifying the structure of
sentences (trees) of arithmetic, but it is not designed for assigning a unique derivation tree to a
string purporting to be a sentence. In real life, we tvge BNF definitions: one to determine
the derivation tree that a string abbreviates, and one to analyze the tree’s structure and deter-
mine its semantics. Call these tbencreteandabstract syntax definitionsespectively.

A formal relationship exists between an abstract syntax definition and its concrete coun-
terpart. The tree generated for a string by the concrete definition identifies a derivation tree for
the string in the abstract definition. For example, the concrete derivation treexf@r 4 in
Figure 1.4 identifies the tree in Figure 1.2 because the branching structures of the trees match.

Concrete syntax definitions will no longer be used in this text. They handle parsing prob-
lems, which do not concern us. We will always work with derivation trees, not strings. Do
remember that the concrete syntax definition is derived from the abstract one and that the

Figure 1.4
<expression>

<expression> <lowop> <term>

<term> <factor>
<term> <highop><factor> <numeral>
<factor> <numeral> <digit>
<numeral> <digit>
<digit>

4 X 2 + 1

Syntax 9

abstract syntax definition is the true definition of language structure.

1.1 ABSTRACT SYNTAX DEFINITIONS

Abstract syntax definitions describe structure. Terminal symbols disappear entirely if we study
abstract syntax at the word level. The building blocks of abstract syntax are words (also called
tokensas in compiling theory) rather than terminal symbols. This relates syntax to semantics
more closely, for meanings are assigned to entire words, not to individual symbols.

Here is the abstract syntax definition of arithmetic once again, where the numerals,
parentheses, and operators are treated as tokens:

<expression> ::= <numeral> | <expression> <operator> <expression>
| left-paren<expressionxight-paren

<operator> ::=plus | minus| mult | div

<numeral>::=zero| one| two | - - - | ninety-nine| one-hundred - - -

The structure of arithmetic remains, but all traces of text vanish. The derivation trees have the
same structure as before, but the tree’s leaves are tokens instead of symbols.

Set theory gives us an even more abstract view of abstract syntax. Say that each nonter-
minal in a BNF definition names the set of those phrases that have the structure specified by
the nonterminal’s BNF rule. But the rule can be discarded: we introduce syntax builder opera-
tions, one for each form on the right-hand side of the rule.

Figure 1.5 shows the set theoretic formulation of the syntax of arithmetic.

The language consists of three sets of values: expressions, arithmetic operators, and
numerals. The members of theimeralset are exactly those values built by the “operations”

(in this case, they are really constar#s)q one two, and so on. No other values are members
of the Numeralset. Similarly, theOperator set contains just the four values denoted by the
constantplus, minus mult, anddiv. Members of theExpressiorset are built with the three
operationsmake-numeral-into-expressiomake-compound-expressjocand make-bracketed-
expression Considemake-numeral-into-expressighconverts a value from thlumeralset

into a value in theExpressiorset. The operation reflects the idea that any known numeral
can be used as an expression. Similarlpake-compound-expressi@mombines two
known members of thExpressiorset with a member of th@®perationset to build a member

of the Expressiorset. Note thatmake-bracketed-expressidnes not need parenthesis tokens
to complete its mapping; the parentheses were just “window dressing.” As an example, the
expression 4 + 12 is represented hgake-compound-expression (make-numeral-into-
expression(four), plus, make-numeral-into-expression(twelve)).

When we work with the set theoretic formulation of abstract syntax, we forget about
words and derivation trees and work in the world of sets and operations. The set theoretic
approach reinforces our view that syntax is not tied to symbols; it is a matter of structure. We
use the ternsyntax domairior a collection of values with common syntactic structure. Arith-
metic has three syntax domains.

In this book, we use a more readable version of set-theoretic abstract syntax due to

10 Syntax

Figure 1.5

Sets:
Expression
Op
Numeral

Operations:
make-numeral-into-expressiddumeral— Expression
make-compound-expressidxpressiox Opx Expression= Expression
make-bracketed-expressidexpression= Expression

plus Op
minus Op
mult Op
div: Op

zera Numeral
one Numeral
two: Numeral

ninety-nine Numeral
one-hundredNumeral

Strachey. We specify a language’s syntax by listing its syntax domains and its BNF rules.
Figure 1.6 shows the syntax of a block-structured programming language in the new format.

As an example from Figure 1.6, the phraseHock indicates that Block is a syntax
domain and that B is the nonterminal that represents an arbitrary member of the domain. The
structure of blocks is given by the BNF rule B::=D;C which says that any block must consist
of a declaration (represented by D) and a command (represented by C). The ; token isn't really
necessary, but we keep it to make the rule readable.

The structures of programs, declarations, commands, expressions, and operators are simi-
larly specified. (Note that the Expression syntax domain is the set of arithmetic expressions
that we have been studying.) No BNF rules exist for Identifier or Numeral, because these are
collections of tokens. Figures 1.7 and 1.8 give the syntax definitions for an interactive file edi-
tor and a list processing language. (Tdretoken in Figure 1.7 represents the carriage return
symbol.)

A good syntax definition lends a lot of help toward understanding the semantics of a
language. Your experience with block-structured languages helps you recognize some fami-
liar constructs in Figure 1.6. Of course, no semantic questions are answered by the syntax
definition alone. If you are familiar with ALGOL60 and LISP, you may have noted a number
of constructs in Figures 1.6 and 1.8 that have a variety of possible semantics.

1.2 Mathematical and Structural Induction11

Figure 1.6

Abstract syntax:

PE Program

B& Block

D& Declaration

Ce Command

EE Expression

O€& Operator

| € Identifier

NE Numeral

=B.

=D;C

:=var | | procedurel; C | Dy; Dy
.= I:=E |if Ethen C [while Edo C | C;;C; | begin B end
=IIN|E OE | (E)

D=t |- # | div

OmO T W™

Figure 1.7

Abstract syntax:

P& Program-session

S& Command-sequence
Ce Command

Re Record

| € Identifier

P ::=Scr

S ;= Ccr S |quit

C ::=newfile | openl | moveup| moveback]|
insert R | delete| close

12 Syntax

Figure 1.8

Abstract syntax:

PE Program
EE Expression
Le List

Ae Atom

P:=E,Plend
E:=A|L|headE [tail E|letA=E; in E,
L:=(AL)]0

1.2 MATHEMATICAL AND STRUCTURAL INDUCTION

Often we must show that all the members of a syntax domain have some property in common.
The proof technique used on syntax domains is caltedctural induction. Before studying

the general principle of structural induction, we first consider a specific case of it in the guise
of mathematical inductionMathematical induction is a proof strategy for showing that all the
members of IN, the natural numbers, possess a properfjhe strategy goes:

1. Show that 0 haB, that is, show thalP(0) holds.
2. Assuming that an arbitrary membez N has P, show thati +1 has it as well; that is,
show thatP(i) impliesP(i +1).

If steps 1 and 2 are proved for a propeRythen it follows that the property holds for all the
numbers. (Why? Any numbéecs N is exactly (- - - ((0+1)+1)+ - - -+1), the 1 added times.
You take it from there.) Here is an application of mathematical induction:

1.1 Proposition:

For any re N, there exist exactly Inpermutations of n objects.

Proof: We use mathematical induction to do the proof.

Basis: for 0 objects, there exists the “empty” permutation; since 0! equals 1, this case
holds.

Induction: for nEIN assume that there existt permutations o objects. Now add a

new objectj to the n objects. For each permutatidg, k;», - - -, ki, of the existing
objects, n+1 permutations result: they arg ki1, ko, = - -, Kn: ki1, J, Ko, = 7, Kins
Kit, Kioy j, = 7y King K1, Kio, * - 4 0y Kins @andkiq, Ko, - - -, Kin, j. Since there ara! permu-

tations ofn objects, a total ofr{(+1)xn! = (n+1)! permutations exist fon+1 objects.
This completes the proof.]

The mathematical induction principle is simple because the natural numbers have a sim-
ple structure: a number is either O or a number incremented by 1. This structure can be

1.2 Mathematical and Structural Induction13

formalized as a BNF rule:
N:=0|N+1

Any natural number is just a derivation tree. The mathematical induction principle is a proof
strategy for showing that all the trees built by the rule for N possess a prdpefyep 1 says

to show that the tree of depth zero, the leaf 0, Rastep 2 says to use the fact that a trbéas
propertyP to prove that the tree+1 hasP.

The mathematical induction principle can be generalized to work upon any syntax
domain defined by a BNF rule. The generalized proof strategy is structural induction. Treat-
ing the members of a syntax domdinas trees, we show that all treeslnhave propertyP
inductively:

1. Show that all trees of depth zero ha¥e
2. Assume that for an arbitrary deptte: O all trees of deptim or less havé®, and show that
a tree of deptim+1 must haved® as well.

This strategy is easily adapted to operate directly upon the BNF rule that generates the trees.

1.2 Ddinition:

The structural induction principle: for the syntax domain D and its BNF rule:

d := Option; | Optiorp | - - - | Optior,
all members of D have a property P if the following holds for each Optifom 1<i<n:
if every occurrence of d in Optigas P, then Optigrhas P.

The assumption “every occurrence @in Option hasP” is called theinductive hypothesis.
The method appears circular because it is necessary to assume that DdesviglP to prove
that theD-tree built usingOption hasP, but the tree being built must have a depth greater
than the subtrees used to build it, so steps 1 and 2 apply.

1.3 Theorem:

The structural induction principle is valid.

Proof: Given a propositiorP, assume that the claim “if every occurrencedih Option

hasP, thenOption hasP” has been proved for each of the options in the BNF ruledor

But say that some treein D doesn't have propertl?. Then a contradiction results: pick
the D-typed subtree int of the least depth that does not ha¥e (There must always be
one; it can be if necessary. If there are two or more subtrees that are “smallest,” choose
any one of them.) Call the chosen subtteeSubtreeu must have been built using some
Option,, and all of its properD-typed subtrees hav®. But the claim “if every
occurrence ofl in Option, hasP, thenOption, hasP” holds. Thereforeu must have pro-
perty P— a contradiction.[]

Here are two examples of proofs by structural induction.

1.4 Example:

14 Syntax

For the domain E: Expression and its BNF rule:
E ::=zero| E;*E; | (E)

show that all members of Expression have the same number of left parentheses as the
number of right parentheses.

Proof: Consider each of the three options in the rule:

1. zero: this is trivial, as there are zero occurrences of both left and right parentheses.

2. E*Es: by the inductive hypothesis,Ehas, saym left parentheses anah right
parentheses, and similarly, bhasn left parentheses anad right parentheses. Then
E; *E, hasm+ n left parentheses anmd+ n right parentheses.

3. (E): by the inductive hypothesis, E hasleft parentheses ana right parentheses.
Clearly, (E) hasn+1 left parentheses amd+1 right parenthesed.]

The structural induction principle generalizes to operate over a number of domains simul-
taneously. We can prove properties of two or more domains that are defined in terms of one
another.

1.5 Example:
For BNF rules:
S i=xE=
E ;= +S |#=
show that all S-values have an even number of occurrences efttiken.

Proof: This result must be proved by a simultaneous induction on the rules for S and E,
since they are mutually recursively defined. We prove the stronger claim that “all
members of and E have an even number of occurrences:df For rule S, consider its

only option: by the inductive hypothesis, the E tree has an even number sy, m of

them. Then the:Ex* tree hagn+2 of them, which is an even value. For rule E, the first
option builds a tree that has an even number:pfbecause by the inductive hypothesis,

the S tree has an even number, and no new ones are added. The second option has
exactly two occurrences, which is an even numbgey.

Suggested Readings15

SUGGESTED READINGS

Backus-Naur form: Aho & Ullman 1977; Barrett & Couch 1979; Cleaveland & Uzgalis

1977; Hopcroft & Ullman 1979; Naur et al. 1963

Abstract syntax: Barrett & Couch 1979; Goguen, Thatcher, Wagner, & Wright 1977; Gor-

don 1979; Henderson 1980; McCarthy 1963; Strachey 1966, 1968, 1973

Mathematical and structural induction: Bauer & Wossner 1982; Burstall 1969; Manna

1974; Manna & Waldinger 1985; Wand 1980

EXERCISES

1. a. Convert the specification of Figure 1.6 into the classic BNF format shown at the

beginning of the chapter. Omit the rules for <Identifier> and <Numeral>. If the
grammar is ambiguous, point out which BNF rules cause the problem, construct
derivation trees that demonstrate the ambiguity, and revise the BNF definition into a
nonambiguous form that defines the same language as the original.

b. Repeat part a for the definitions in Figures 1.7 and 1.8.

Describe an algorithm that takes an abstract syntax definition (like the one in Figure 1.6)
as input and generates as output a stream containing the legal sentences in the language
defined by the definition. Why isn’t ambiguity a problem?

Using the definition in Figure 1.5, write the abstract syntax forms of these expressions:

a. 12
b. (4+14)=x3
c. ((7/0))

Repeat a-c for the definition in Figure 1.6; that is, draw the derivation trees.
Convert the language definition in Figure 1.6 into a definition in the format of Figure 1.5.

What advantages does each format have over the other? Which of the two would be easier
for a computer to handle?

. Alter the BNF rule for the Command domain in Figure 1.6 to read:
C:=S|S,C
S ::=I=E |if EthenC |while Edo C | beginB end

Draw derivation trees for the old and new definitions of Command. What advantages
does one form have over the other?

Using Strachey-style abstract syntax (like that in Figures 1.6 through 1.8), define the
abstract syntax of the input language to a program that maintains a data base for a grocery
store’s inventory. An input program consists of a series of commands, one per line; the

16

10.

11.

Syntax

commands should specify actions for:

a. Accessing an item in the inventory (perhaps by catalog number) to obtain statistics
such as quantity, wholesale and selling prices, and so on.

Updating statistical information about an item in the inventory

Creating a new item in the inventory;

Removing an item from the inventory;

Generating reports concerning the items on hand and their statistics.

®ooco

a. Prove that any sentence defined by the BNF rule in Example 1.4 has more
occurrences aterothan occurrences &f

b. Attempt to prove that any sentence defined by the BNF rule in Example 1.4 has more
occurrences oterothan of (. Where does the proof break down? Give a counterex-
ample.

Prove that any program in the language in Figure 1.6 has the same numibegiof
tokens as the number efid tokens.

Formalize and prove the validity of simultaneous structural induction.

The principle otransfinite inductioron the natural numbers is defined as follows: for a
propertyP on IN, if for arbitraryn= 0, ((for all m<n, P(m) holds) impliesP(n) holds),
then for alln= 0, P(n) holds.

a. Prove that the principle of transfinite induction is valid.
b. Find a property that is provable by transfinite induction and not by mathematical
induction.

Both mathematical and transfinite induction can be generalized. A retatiol x D is a
well-founded orderingff there exist no infinitely descending sequence®irthat is, no
sequences of the foray, >d,_; >d,, »,> - - -, where> = <- 1.

a. The general form of mathematical induction operates over a pak:(), where all
the members ob form one sequenady < d; < dy < - - < dj< ---. (Thus< isa
well-founded ordering.)

i. State the principle of generalized mathematical induction and prove that the prin-
ciple is sound.

ii. Whatis<- forD=IN?

iii. Give an example of another set with a well-founded ordering to which generalized
mathematical induction can apply.

b. The general form of transfinite induction operates over a [Egik(), where<- is a
well founded ordering.

i. State the principle of general transfinite induction and prove it valid.

ii. Show that there exists a well-founded ordering on the words in a dictionary and
give an example of a proof using them and general transfinite induction.

iii. Show that the principle of structural induction is justified by the principle of gen-
eral transfinite induction.

Chapter 2

Sets, Functions, and Domains

Functions are fundamental to denotational semantics. This chapter introduces functions
through set theory, which provides a precise yet intuitive formulation. In addition, the con-
cepts of set theory form a foundation for the theorysefnantic domainghe value spaces

used for giving meaning to languages. We examine the basic principles of sets, functions, and
domains in turn.

2.1 SETS

A setis a collection; it can contain numbers, persons, other sets, or (almost) anything one
wishes. Most of the examples in this book use numbers and sets of numbers as the members
of sets. Like any concept, a set needs a representation so that it can be written down. Braces
are used to enclose the members of a set. Thus, {1, 4, 7} represents the set containing the
numbers 1, 4, and 7. These are also sets:

{1,{1,4,7}, 4}
{ red, yellow, grey}
{}

The last example is thempty setthe set with no members, also written@s
When a set has a large number of members, it is more convenient to specify the condi-
tions for membership than to write all the members. ASean be defined b$= { x | P(x)},
which says that an objeatbelongs taSiff (if and only if) a has propertyp, that is,P(a) holds
true. For example, I€® be the property “is an even integer.” Therx{| x is an even integgr
defines the set of even integers, an infinite set. Note #hatan be defined as the set
{x | x2x}. Two setsR and S are equivalent, writtefir= S if they have the same members.
For example, {1,4, 7% {4,7,1}.
These sets are often used in mathematics and computing:

1. Natural numbersN={0,1,2,---}
2. Integers £={ ---,-2,-1,0,1,2,---}
3. Rational numbersQ={ x | forp&Z andge %, =0, x=p/q}
4. Real numbersR={x | xis a point on the line

-2 -1 0 1 2

}

5. Characters € ={x | xis a character}
6. Truth values (Booleans)B = { true, false}

The concept of membership is central to set theory. We w#i8 to assert thak is a

member of seS. The membership test provides an alternate way of looking at sets. In the
17

18 Sets, Functions, and Domains

above examples, the internal structure of sets was revealed by “looking inside the braces” to
see all the members inside. An external view treats &set a closed, mysterious object to
which we can only ask questions about membership. For example, “do8$ald?,” “does

4 S hold?,” and so on. The internal structure of a set isn't even important, as long as
membership questions can be answered. To tie these two views together, set theory supports
the extensionality principle a setR is equivalent to a se$ iff they answer the same on all

tests concerning membership:

R= Sif and only if, for all x, x€R holds iff x€Sholds

Here are some examples using membership:

1€ {1, 4, 7} holds
{1} €{1, 4, 7} does not hold
{1} €{{1}, 4, 7} holds

The extensionality principle implies the following equivalences:

{1,4,7}={4,1,7}
{1,4,7}={4,1,7,4}

A setRis asubsebf a setSif every member oR belongs tcS
RC Sif and only if, for all x, XER impliesxeS
For example,

{1}<{1,4,7}
{1,4,7}C{1,4,7}
{}1€{1,4,7}

all hold true but {1}Z{{1},4,7}.

2.1.1 Constructions on Sets

The simplest way to build a new set from two existing ones isinmn them together; we
write RU Sto denote the set that contains the membelR ahdSand no more. We can define
set union in terms of membership:

for all x, x€RU Sif and only if xER or x&S
Here are some examples:
{1,2}uU{1,4,7}={1,2,4,7}

{}U{1,2}={12}
{{}} u{r,2}={{} 12}

The union operation is commutative and associative; that R§)S=SJR and
(RUS U T=RU (SUT). The concept of union can be extended to join an arbitrary number of

2.1.1 Constructions on Sets19

sets. IfRy, Ry, Ry, - - - is an infinite sequence of sets) R, stands for their union. For exam-
i=0
ple, = J{-i, ---,-1,0,1,- -+, i} shows how the infinite union construction can build an
i=0

infinite set from a group of finite ones.
Similarly, theintersectionof setsR andS, RN S is the set that contains only members
common to botlR andS:

for all x, x&eRN Sif and only if xR andxeS

Intersection is also commutative and associative.

An important concept that can be defined in terms of sets (though it is not done here) is
the ordered pair.For two objects< andy, their pairing is written X,y). Ordered pairs are use-
ful because of the indexing operatidissandsnd,defined such that:

fst(x,y) = x
sndx,y)=y
Two ordered pair® andQ are equivalent iffst P= fst Qandsnd P= snd Q Pairing is useful

for defining another set construction, the product construction. FoRsatsglS,their product
Rx Sis the set of all pairs built frorR andS:

Rx S={(x,y) | X€R andyeS}

Both pairing and products can be generalized from their binary formatstaples andn-
products.

A form of union construction on sets that keeps the members of the respectiveaals
Sseparate is calledisjoint union(or sometimessunj:

R+S={(zerax) | xeR} U {(oneYy) | y=S}

Ordered pairs are used to “tag” the membersRo&nd S so that it is possible to examine a
member and determine its origin.

We find it useful to define operations for assembling and disassembling members of
R+ S For assembly, we proposeRmand ir§ which behave as follows:

for xER, InR(X) = (zerq x)
for yeS injy) = (one y)

To remove the tag from an elememtz R+ S, we could simply sayndm), but will instead
resort to a better structured operation cattades.For anyme R+ S the value of:

casesn of
ISR(X)_> Yt
|]isS(y)—> INVERE
end
is* - -x---"whenm=(zerg x) andis - - -y - - -” when m= (one y). Thecasesoperation

makes good use of the tag on the sum element; it checks the tag before removing it and using
the value. Do not be confused by th®iand isS phrases. They are not new operations. You

20 Sets, Functions, and Domains

should read the phrasdRs) — - - -x - - - as saying, “ifmis an element whose tag component
is Rand whose value componentighen the answeris - -x - - -.” As an example, for:

f(m) = casesn of
isSN(n) = n+1
[isB(b)—0
end

f(inIN(2)) = f(zerg 2) = 2+ 1 = 3, butf(inB(true)) = f(one true) = 0.
Like a product, the sum construction can be generalized from its binary formatums.
Finally, the set of all subsets of a geis called itspowerset

PR)={x | XCR}
{} € PR) andRE P(R) both hold.

2.2 FUNCTIONS

Functions are rather slippery objects to catch and examine. A function cannot be taken apart
and its internals examined. It is like a “black box” that accepts an object as its input and then
transforms it in some way to produce another object as its output. We must use the “external
approach” mentioned above to understand functions. Sets are ideal for formalizing the
method. For two setR andS, fis afunctionfrom Rto S,writtenf: R— S if, to each member

of R, fassociates exactly one memberSfThe expressioiR— Sis called thearity or func-
tionality of f. R is thedomainof f; Sis the codomainof f. If xR holds, and the element
paired tox by f is y, we writef(x) = y. As a simple example, R={1, 4,7}, S={2, 4,6}, and

f mapsRto Sas follows:

R S
f

1 2

4 4

7 6

thenf is a function. Presenting an argumaertb f is calledapplicationand is writtenf(a). We

don’t knowhow ftransforms 1 to 2, or 4 to 6, or 7 to 2, but we accept that somehow it does;
the results are what matter. The viewpoint is similar to that taken by a naive user of a com-
puter program: unaware of the workings of a computer and its software, the user treats the
program as a function, as he is only concerned with its input-output properties. An exten-
sionality principle also applies to functions. For functidn®— Sandg: R— S f is equal to

2.2 Functions 21

g, writtenf = g, iff for all xER, f(x) = g(x).

Functions can be combined using the composition operationf:F+ Sandg: S—T,
gef is the function with domairR and codomainT such that for allx: R, g e f(x) = g(f(x)).
Composition of functions is associative: fdr and g as given above andth:T—U,
he(gef)=(heog)ef.

Functions can be classified by their mappings. Some classifications are:

1. one-one f: R— Sis aone-ong(1-1) function iff for all xeR andyeR, f(x) =f(y) implies

X=Y.

onta f: R— Sis anontofunction iff S={y | there exists some=R such that(x)=y}.

3. identity. f: R— Ris theidentityfunction forRiff for all XER, f(x) = x.

4. inverse for somef: R— S if f is one-one and onto, then the functignS— R, ddfined
asg(y) = xiff f(x) =y is called thenverse function of fEunctiong is denoted by.

N

Functions are used to define many interesting relationships between sets. The most
important relationship is called asomorphism two setsR andSareisomorphicif there exist
a pair of functiond: R— Sandg: S— R such thag e f is the identity function foR andf - g
is the identity function foiS. The mapd andg are calledsomorphisms.A function is an iso-
morphism if and only if it is one-one and onto. Further, the invérSeof isomorphismf is
also an isomorphism, 43" o f andf o f! are both identities. Here are some examples:

1. R={1,4, 7} is isomorphic toS={2, 4, 6}; takef: R—Sto bef(1)=2, f(4)=6, f(7)=4;
andg: S— Rto beg(2)=1, g(4)=7, g(6)=4.

2. For setA andB, Ax B is isomorphic taB x A; takef: Ax B— Bx Ato bef(a,b) = (b,a).

3. Nisisomorphicto Z; také: IN— 7 to be:

x/2 if X is even

=1 _((x+1)2) ifxis odd

You are invited to calculate the inverse functions in examples 2 and 3.

2.2.1 Representing Functions as Sets

We can describe a function via a set. We collect the input-output pairings of the function into
a set called itgraph. For functionf: R— S the set:

graph(f) = {(x, f()) | xeR}
is the graph of. Here are some examples:

1. f:R— Sinexample 1 above:

graph(f) = {(1,2), (4,6), (7,4)}
2. the successor function dn Z

graph(sucg={ - - -, (-2,-1), (-1,0), (0,1), (1,2); - - }
3. f:IN—1Z in example 3 above:

graph(f) = {(0,0), (1.-1), (2,1), (372), (4.2)," - - }

In every case, we list the domain and codomain of the function to avoid confusion about

22 Sets, Functions, and Domains

which function a graph represents. For exampld\N— IN such thatf(x)=x has the same graph
asg: N — Z such thag(x)=x, but they are different functions.

We can understand function application and composition in terms of graphs. For applica-
tion, f(a)=b iff (ab) is in graphf). Let there be a functionapply such that
f(a) = apply(graph(f), a). Composition is modelled just as easily; for graghsk— S and
g:S—T:

graph(g° f)={(x,2) | XER and there exists &35
such that(x,y)€ graph(f) and(y,2& graph(g) }

Functions can have arbitrarily complex domains and codomains. For exaniplandsS
are sets, so iRx S and it is reasonable to malkex Sthe domain or codomain of a function.
If it is the domain, we say that the function “needs two arguments”; if it is the codomain, we
say that it “returns a pair of values.” Here are some examples of functions with compound
domains or codomains:

1. add: (NxIN)—IN

graph(add) = {((0,0), 0), ((1,0), 1), ((0,1), 1), ((1,1), 2), ((2,1), 3); " }
2. duplicate: R— (RxR), whereR= {1, 4, 7}

graph(duplicatg = { (1, (1,1)), (4,(4,4)), (7, (7,7))}
3. which-part: (B+IN) — S where S= { isbool isnum}

graph(which-par) = { ((zerq true), isbool), ((zerq false), isboo),

((one 0),isnun, ((onel),isnumn,
((one 2),isnunj, - - -,((one n), isnunj, - - -}

4. make-singletoniN — IP(IN)

graph(make-singleton= { (0, {0}), (1,{1}), ---,(n,{n}), ---}
5. nothing: BNIN—B

graph(nothing = { }

The graphs make it clear how the functions behave when they are applied to arguments.
For exampleapply(graph(which-par), (one 2))=isnum We see in example 4 that a function
can return a set as a value (or, for that matter, use one as an argument). Since a function can be
represented by its graph, which is a set, we will allow functions to accept other functions as
arguments and produce functions as answers. Lesdéhef functions from R to Be a set
whose members are the graphs of all functions whose domdraisd codomain isS. Call
this setR— S Thus the expressioit R— S also states thdts graph is a member of the set
R— S A function that uses functions as arguments or results is call@gheer-order func-
tion. The graphs of higher-order functions become complex very quickly, but it is important
to remember that they do exist and everything is legal under the set theory laws. Here are
some examples:

6. split-add: IN— (N — IN). Functionsplit-addis the addition function “split up” so that it
can accept its two arguments one at a time. It is definedptisaddx) = g, where
g: N—Nis g(y) = add(x,y). The graph gives a lot of insight:

2.2.1 Representing Functions as Set33

graph(split-add = {(0,{(0,0), (1,1), 2.2), - })
(1,{(0,2), (1,2), 2.3); - })
(2,{0,2), (1,3), 2.4); -~ }), -~}

Each argument from IN is paired with a graph that denotes a function from IN to IN. Com-
pare the graph aéplit-addto that ofadd; there is a close relationship between functions
of the form Rx S — T to those of the fornR— (S— T). The functions of the first form
can be placed in one-one onto correspondence with the ones of the second form— the
sets Rx S — T andR— (S— T) are isomorphic.

7. first-value (N—IN) —IN. The function looks at the value its argument produces when
applied to a zerdirst-valugf) = f(0), and:

graph(first-value={ - - -, ({(0,1), (1,1), (2,1),(3,6); - - }, 1),
-+, ({(0,49), (1,64), (2,81), (3,100),- - }, 49),
Writing the graph for the function is a tedious (and endless) task, so we show only two
example argument, answer pairs.
8. make-succ(N — IN) — (N — IN). Function make-sucduilds a new function from its

argument by adding one to all the argument function’s answaiake-sucd) = g, where
g: N—IN andg(x) = f(x)+1.

graph(make-sucg={ - -,
({(0,1), (1,1),(2,1), (3,6); - - },
{(0,2),(1,2),(2,2),(3,7); - }),

((0:49), (1,64), (2,81), (3,100)," - },
{(0,50), (1,65), (2,82), (3,101),- - })
"}
9. apply: (N —IN) x N) — IN. Recall thatapply(f,x) = f(x), so its graph is:

graph(apply)={ - - -, (({(0,1), (1,1), (2,1), 3,6); - - }, 0), 1),
({(0,1), (1,1), (2,1),(8,6); - - }, 1), 1),
(({(0,1), 1, 1), (2,1), 3.6); - - }, 2), 1),
(({(0,1), 1,1), (2,1), (3,6); - - }, 3), 6),

(({(0,49), (1,64), (2,81), (3,100)," - }, 0), 49),

(({(0,49), (1,64), (2,81), (3,100),- - }, 1), 64),
The graph ofapplyis little help; things are getting too complex. But it is important to
understand why the pairs are built as they are. Each pajraph(apply) contains an

24 Sets, Functions, and Domains

argument and an answer, where the argument is itself a set, number pair.

2.2.2 Representing Functions as Equations

The graph representation of a function provides insight into its structure but is inconvenient to
use in practice. In this text we use the traditional equational format for specifying a function.
Here are the equational specifications for the functions described in examples 1-5 of Section
2.2.1:

1. add: (N xN)—N
addm,n)=m+n
2. duplicate R— (RxR)
duplicatdr) = (r, r)
3. whichpart (B+N)—=S
which-par{m) = casesn of
isB(b) — isbool
[isN(n) —isnum
end
4. make-singletoniN — IP(IN)
make-singletofm) = { n}
5. nothing: BN IN — B has no equational definition since its domain is empty

The equational format is so obvious and easy to use that we tend to take it for granted.
Nonetheless, it is important to remember that an equdfigr: o, for f: A— B, representsa
function. The actual function is determined by a form of evaluation that uses substitution and
simplification. To usd’s equational definition to map a specifigE A to f(ag)EB, first, sub-
stitute g for all occurrences af in a. The substitution is represented ag/fx]a. Secondsim-
plify [ag/x]a to its underlying value.

Here is the process in action: to determine the the valwdR, 3), we first substitute 2
for mand 3 forn in the expression on the right-hand sideaofds equation, givingadd2, 3)
= [3/n][2/m]m+n = 2+3. Second, we simplify the expression 2+3 using our knowledge of the
primitive operation + to obtain 8= 5. The substitution/simplification process produces a
value that is consistent with the function’s graph.

Often we choose to represent a functign = o asf=2Ax.a; that is, we move the argu-
ment identifier to the right of the equals sign. Theand . bracket the argument identifier.
The choice ofA and . follows from tradition, and the format is callé@mbda notation.
Lambda notation makes it easier to define functions suckpéicadd: IN— (N —IN) as
split-addx) = Ay. x+y or even asplit-add= Ax.Ay. x+y. Also, a function can be defined without
giving it a name: A(X,Yy).x+y is theadd function yet again. Functions written in the lambda
notation behave in the same way as the ones we have used thus far. For example,
(AMX,Y). x+Y)(2,3) = [3Y][2/X]x+Y = 2+3 = 5. Section 3.2.3 in the next chapter discusses lambda
notation at greater length.

As a final addition to our tools for representing functions, we will make use of a function
updating expression. For a functibnA— B, we let [ag by]f be the function that acts just
like f except that it maps the specific valag= Ato by B. That is:

2.2.2 Representing Functions as Equatiorzs

([aot>bo If)(20) = bo
([agk=bg]f)(a) = f(a) for all otheracA such that=ag

2.3 SEMANTIC DOMAINS

The sets that are used as value spaces in programming language semantics aseroalteid
domains.A semantic domain may have a different structure than a set, but sets will serve
nicely for most of the situations encountered in this text. In practice, not all of the sets and set
building operations are needed for building domains. We will make ugeimitive domains

such as IN,|Z B, . . ., and the following four kinds o€ompound domainsyhich are built

from existing domain#\ andB:

1. Product domaindx B

2. Sum domain&+B

3. Function domaing— B

4. Lifted domainsA|, whereA = AU{ | }

The first three constructions were studied in the previous sections. The fayrtigds a spe-
cial value| (read “bottom”) that denotesonterminationor “no value at all.” Since we are
interested in modelling computing-related situations, the possibility exists that a furfiction
applied to an argumeimi= A may yield no answer at all-a) may stand for a nonterminating
computation. In this situation, we say tHatas functionalityA— B| andf(a)= L. The use of
the codomairB instead ofB stands as a kind of warning: in the process of computifiy a
value, nontermination could occur.

Including | as a value is an alternative to using a theoryaitial functions (A partial
functionis a function that may not have a value associated with each argument in its domain.)
A function f that is undefined at argumeathas the propert§(a)= | . In addition to dealing
with undefinedness as a real value, we can also|useclearly state what happens when a
function receives a nonterminating value as an argumentf :#gr—B|, we writef=Ax.a to
denote the mapping:

f(D=1
f(a) = [a/xX]a for acA

The underlined lambda forcédo be astrict function, that is, one that cannot recover from a
nonterminating situation. As an example, foilN; — N, defined asf= An.0, f(]) is |, but for
g:N; — N}, defined asg=An.0, g(]) is 0. Section 3.2.4 in the next chapter elaborates on non-
termination and strictness.

2.3.1 Semantic Algebras

Now that the tools for building domains and functions have been specified, we introduce a for-
mat for presenting semantic domains. The format is calledraantic algebrafor, like the

26 Sets, Functions, and Domains

algebras studied in universal algebra, it is the grouping of a set with the fundamental opera-
tions on that set. We choose the algebra format because it:

1. Clearly states the structure of a domain and how its elements are used by the functions.

2. Encourages the development of standard algebra “modules” or “kits” that can be used
in a variety of semantic definitions.

3. Makes it easier to analyze a semantic definition concept by concept.

4. Makes it straightforward to alter a semantic definition by replacing one semantic algebra
with another.

Many examples of semantic algebras are presented in Chapter 3, so we provide only one
here. We use pairs of integers to simulate the rational numbers. Operations for creating,
adding, and multiplying rational numbers are specified. The example also introduces a func-
tion that we will use often: the expressia® — e, || e; is thechoice functionwhich has as
its valuee, if e; = true ande; if g, = false

2.1 Example: Simulating the rational numbers

DomainRat= (£ x¥),
Operations

makerat £ — (¥ — Raj

makerat Ap.Ag.(g=0)— | [| (p.q)
addrat: Rat— (Rat— Raj)

addrat= A(p1,d1)-MP2, %2). ((P1#02)+(P2#01), G1+0k2)
multrat; Rat— (Rat— Ral)

multrat= A(py,d1)-AMP2,d2)- (P1#P2, d1*02)

Operationmakeratgroups the integerg andq into a rationalp/q, represented byp(q). If the
denominatorq is 0, then the rational is undefined. Since the possibility of an undefined
rational exists, theddrat operation checks both of its arguments for definedness before per-
forming the addition of the two fractionMultrat operates similarly.

The following chapter explains, in careful detail, the notion of a domain, its associated
construction and destruction operations, and its presentation in semantic algebra format. If
you are a newcomer to the area of denotational semantics, you may wish to skip Chapter 3 and
use it as a reference. If you decide to follow this approach, glance at Section 3.5 of the
chapter, which is a summary of the semantic operations and abbreviations that are used in the
text.

Suggested Readings27

SUGGESTED READINGS

Naive set theory: Halmos 1960; Manna & Waldinger 1985
Axiomatic set theory: Devlin 1969; Enderton 1977; Lemmon 1969

EXERCISES

1.

List (some of) the members of each of these sets:

a. NNz
b. Z-N
c. Bx(C+B)
d N-(NUZ)

Give the value of each of these expressions:

a. fst(4+2,7)

b. snd7, 7+fst(3-1, 0))

c. cases inN(81) of isB{) — 0 [isN(n) —n+2 end
d. {true} U(P(B)-{{ true}})

Using the extensionality principle, prove that set union and intersection are commutative
and associative operations.

In “pure” set theory, an ordered pdir= (x,y) is modelled by the sé¥ = {{ x}, { x,y}}.

a. Using the operations union, intersection, and set subtraction, define opefsitiand
snd such thafst(P\) = x andsnd(P1) = y.
b. Show that for any other s€ such thafst(Qr) = x andsnd(Q) = y thatP:= Q.

Give examples of the following functions if they exist. If they do not, explain why:

a. aone-one function from B to IN; from N to B.

b. aone-one function from IMIN to IR; from R to IN x IN.
c. an onto function from N to B; from B to IN.

d. anonto function from N to Q; frorh @ IN.

For set®k andS, show that:

a. RxS=SxRcan hold, buRx Sis always isomorphic t&x R.
b. R+S=RU Salways holds, buR+ Scan be isomorphic tRU S.

Prove that the composition of two one-one functions is one-one; that the composition of
two onto functions is onto; that the composition of two isomorphisms is an isomorphism.
Show also that the composition of a one-one function with an onto function (and vice
versa) might not be either one-one or onto.

Sets, Functions, and Domains

. Using the definition o$plit-addin Section 2.2.1, determine the graphs of:

a. split-add?3)
b. split-addsplit-add2)(1))

. Determine the graphs of:

a. split-sub: Z —F — % such thasplit-sul{x) = g, whereg: ¥ — 7% isg(y)=x-y
b. split-sub: IN— N — %, where the function is defined in part a.

. The previous two exercises suggest that there is an underlying concept for “splitting” a
function. For a setD, we definecurryD: (DxD)—D) —(D—(D—D)) to be
curryD(f)= g, where g(x) = h, where h(y)=f(x,y). Write out (part of) the graph for
curryB: ((B x B) - B) — (B — (B — B)).

. For B={true, false} and N={0, 1, 2, - - - }, what are the functionalities of the func-
tions represented by these graphs?

a. {(true, 0), false 1)}
b. {((true, 0), (rue, true)), ((true, 1), true, false), ((true, 2), (true, false),
-+, ((falsg 0), (false true)), ((false 1), (false falsg), ((falsg 2),

(false falsg), - - - }
c. {({(true, true), (false true)}, true), ({(true, true), (false false }, false,

-+, ({(true, false, (false true) }, true), - - - }

. Use the definitions in Section 2.2.2 to simplify each of the following expressions:
a. make-singletofadd3,2))U{4}

b. addsndduplicatg4)), 1)

c. which-par{inN(add2,0)))

d. ([3—{4}] make-singleto}{2)

e. ([3—{4}] make-singleto}{3)

. For the equational definitiofag(n)= (n=0)— 1 [| nxfac(n-1), show that the following
properties hold (hint: use mathematical induction):

a. ForallneIN, fac(n) has a unique value, that i®cis a function.
b. Foralln€NN, fac(n+2)>n.

. List the elements in these domains:

(BXB)J_
B xB
(BxB)+B
(B+B)i
Bl+Bl
B—>Bi
(B—B),

@ ~0o o0 o

Exercises 29

15. Simplify these expressions using the algebra in Example 2.1:

addrat(makerai3) (2)) (makera(1) (3))

addrat(makeraf(2) (0)) (multrat(makerai3) (2)) (makera(1) (3)))
(Ar. one (makeraf(1) (0))

(Ar. one) (makera(1) (0))

O\(r,). addra(r) (s)) ((makerai2) (1)), (makerai(3) (2)))

(M\(r, 9).1) ((makera(2) (1)), (makerai(1) (0)))

"0 00T

16. The sets introduced in Section 2.1 belongntve set theorywhich is called such
because it is possible to construct set definitions that are nonsensical.

a. Show that the definitionX | x&} is a nonsensical definition; that is, no set exists
that satisfies the definition.
b. Justify why the domain constructions in Section 2.3 always define sensical sets.

Chapter 3

Domain Theory I: Semantic Algebras

Before we can study the semantics of programming languages, we must establish a suitable
collection of meanings for programs. We employ a framework callechain theory: the

study of “structured sets” and their operations. A programmer might view domain theory as
“data structures for semantics.” Nonetheless, domain theory is a formal branch of
(computing-related) mathematics and can be studied on its own.

The fundamental concept in domain theory ise@mantic domaina set of elements
grouped together because they share some common property or use. The set of natural
numbers is a useful semantic domain; its elements are structurally similar and share common
use in arithmetic. Other examples are the Greek alphabet and the diatonic (musical) scale.
Domains may be nothing more than sets, but there are situations in which other structures such
as lattices or topologies are used instead. We can use domains without worrying too much
about the underlying mathematics. Sets make good domains, and you may safely assume that
the structures defined in this chapter are nothing more than the sets discussed in Chapter 2.
Chapter 6 presents reasons why domains other than sets might be necessary.

Accompanying a domain is a set operations.The operations are functions that need
arguments from the domain to produce answers. Operations are defined in two parts. First, the
operation’s domain and codomain are given by an expression called the operétioty's
tionality. For an operatiorf, its functionality f: D;x Dox - - -x D,— A says thatf needs an
argument from domai, and one fromD,, . . ., and ondrom D, to produce an answer in
domainA. Second, a description of the operation’s mapping is specified. The description is
usually an equational definition, but a set graph, table, or diagram may also be used.

A domain plus its operations constituteseanantic algebraMany examples of semantic
algebras are found in the following sections.

3.1 PRIMITIVE DOMAINS

A primitive domainis a set that is fundamental to the application being studied. Its elements
are atomic and they are used as answers or “semantic outputs.” For example, the real
numbers are a primitive domain for a mathematician, as are the notes in the key of C for a
musician, as are the words of a dictionary for a copyeditor, and so on. Here is the most com-
monly used primitive domain:

3.1 Example: The natural numbers

DomainNat= IN
Operations
zero: Nat

30

3.1 Primitive Domains 31

one: Nat
two: Nat

plus: Natx Nat— Nat
minus; Natx Nat— Nat
times; Natx Nat— Nat

The operationgero, one, two, . . areconstants.Each of the members datis named by a
constant. We list the constants for completeness’ sake and to make the point that a constant is
sometimes treated as an operation that takes zero arguments to produce a value. The other
operations are natural number addition, subtraction, and multiplication, respectivelypluthe
andtimesoperations are the usual functions, and you should have no trouble constructing the
graphs of these operations. Natural number subtraction must be clarified: if the second argu-
ment is larger than the first, the result is the constarg otherwise a normal subtraction
occurs.

Using the algebra, we can construct expressions that represent membiats éfere is
an example: plus(times(threg two), minus(one zerg). After consulting the diitions of
the operations, we determine that the expression represents that menNmdrtiodt has the
nameseven The easiest way to determine this fact, though, is by simplification:

plus(timegthree two)), minus(one zerg)
= plus(timegthree two)), one

= plus(six, one

= seven

Each step of the simplification sequence preserved the underlying meaning of the expression.
The simplification stopped at the constaseven (rather than continuing to, say,
times(one sevel), because we seek the simplest representation of the value. The
simplification process makes the underlying meaning of an expression easier to comprehend.
From here on, we will use the arithmetic operations in infix format rather than prefix for-
mat; that is, we will writesix plus onegather tharplus(six, oné.
To complete the definition of natural number arithmetic, let us add the operation
div: Natx Nat— Nat to the algebra. The operation represents natural number (nonfractional)
division; for exampleseverdiv threeis two. But the operation presents a technical problem:
what is the answer when a number is dividedzsyd? A computer implementation afiv
might well consider this an error situation and produce an error value as the answer. We model
this situation by adding an extra elementNat. For anynE N, ndiv zerohas the valuerror.
All the other operations upon the domain must be extended to hendlearguments, since
the new value is a member dfat. The obvious extensions tplus, minus, timesand div
make them produce an answerafor if either of their arguments ierror. Note that the
error element is not always included in a primitive domain, and we will always make it clear
when it is.
The truth values algebra is also widely used, as shown in Example 3.2.

3.2 Example: The truth values

32 Domain Theory |: Semantic Algebras

Domain Tr=B
Operations
true: Tr
false: Tr
not: Tr—Tr
or: TrxTr—Tr
(—_): TrxDxD—D, for a previously defined domaid

The truth values algebra has two constantsde andfalse Operatiomotis logical negation,
andor is logical disjunction. The last operation is the choice function. It uses elements from
another domain in its definition. For valuesn& D, it is ddfined as:

(true—=m] nN)=m
(false—=m] n)=n

Read the expressiox{=y| z) as saying “ifx theny elsez.”
Here are some expressions using numbers and truth values:

1. ((hot(falsg) or false
= true or false
= true

2. (true or fals§— (seven div threg] zero
= true— (seven div threg[] zero
= seven div three two

3. not(nottrug — false[falseor true
= not(not true — false] true
= not false— false| true
=true — false]] true
= false

The utility of the choice function increases if relational operations are added tgatage-
bra. Here are some useful ones:

equals Natx Nat— Tr
lessthan Natx Nat— Tr
greaterthan Natx Nat— Tr

All have their usual definitions. As an example, the expressiot(four equalgone
plusthred) — (one greaterthan zejd] ((fivetimestwo) lessthan zerpsimplifies to the con-
stantfalse.

3.3 Example: Character strings

Domain String= the character strings formed from the element$ of C

3.1 Primitive Domains 33

(including an “error” string)
Operations

A B,C,...,ZString

empty. String

error : String

concat Stringx String— String

length: String— Nat

substr. Stringx Natx Nat— String

Text processing systems use this domain. Single characters are represented by constants.
The constanemptyrepresents the string with no characters. Words are built usimgat,
which concatenates two strings to build a new one. We will be lazy and write a string built
with concatin double quotes, e.g., "ABC" abbreviatesd@hca(B concatC). Operatiorlength
takes a string as an argument and returns its lersgythstris a substring extraction operator:
given a strings and two numbers; andn,, substi(s, ny, n,) extracts that part of that begins
at character position numbet and isn, characters long. (The leading character is at position
zera) Some combinations of(ny, n,) suggest impossible tasks. For example, what is the
value represented bgubstr("ABC ", ong four) or substr("ABC", six, two)? Useerror as the
answer for such combinations. d¢bncatreceives arerror argument, its result ierror; the
length of theerror string iszero;and any attempt to usabstron anerror string also leads to
error.

3.4 Example: The one element domain

Domain Unit, the domain containing only one element
Operations
(): Unit

This degenerate algebra is useful for theoretical reasons; we will also make use of it as an
alternative form of error value. The domain contains exactly one elementin{.is used
whenever an operation needs a dummy argument. Here is an exampfenédt= Nat be
f(x)=one thus, f(())=one We will discard some of the extra symbols and just write
f: Unit— Nat asf() = one thus,f() = one

3.5 Example: Computer store locations

DomainLocation the address space in a computer store
Operations

first-locn: Location

next-locn Location— Location

equal-locrt Locationx Location— Tr

lessthan-locn Locationx Location— Tr

The domain of computer store addresses is fundamental to the semantics of programming

34 Domain Theory |: Semantic Algebras

languages. The memberslafcationare often treated as numbers, but they are just as likely to
be electrical impulses. The constdinst-locn gives the “lowest address” in the store, and the
other locations are accessed in order via tlegt-locnoperation. (Think ofnext-locrfl) as
I+1.) The other two operations compare locations for equality and lessthan.

This algebra would be inadequate for defining the semantics of an assembly language, for
an assembly language allows random access of the locations in a store and treats locations as
numbers. Nonetheless, the algebra works well for programming languages whose storage is
allocated in static or stack-like fashion.

3.2 COMPOUND DOMAINS

Just as programming languages provide data structure builders for constructing new data
objects from existing ones, domain theory possesses a number of domain building construc-
tions for creating new domains from existing ones. Each domain builder carries with it a set
of operation builders for assembling and disassembling elements of the compound domain.
We cover in detail the four domain constructions listed in Section 2.3 of Chapter 2.

3.2.1 Product

Theproductconstruction takes two or more component domains and builds a domain of tuples
from the components. The case of binary products is considered first.

The product domain buildex builds the domaimx B, a collection whose members are
ordered pairs of the forma(b), for acA and beEB. The operation builders for the product
domain include the two disassembly operations:

fst AxB—A
which takes an argumeng,p) in AxB and produces its first componeaEA, that is,
fst(a,b)=a

snd: AxB—B
which takes an argumerd,p) in Ax B and produces its second componb&B, that is,
snd(a,b)=Db

The assembly operation is the ordered pair builder:
if ais an element oA, andb is an element oB, then @, b) is an element oAx B

The product domain raises a question about the functionalities of operations. Does an
operation such asr: Trx Tr— Tr receive two elements frofir as arguments or a pair argu-
ment fromTrx Tr? In domain theory, as in set theory, the two views coincide: the two ele-
ments form one pair.

The product construction can be generalized to work with any collection of domains

3.2.1 Product 35

AL A, - A, for any n>0. We write &, X, "+, X,) to represent an element of
AxAox - - x A,. The subscripting operatiorist and sndgeneralize to a family oh opera-
tions: for eachi from 1 ton, |i denotes the operation such that,@a, - - -, a,)|{i = g.

Theoretically, it is possible to construct products from an infinite number of component
domains, but infinite products raise some technical problems which are considered in exercise
16 in Chapter 6.

Example 3.6 shows a semantic algebra built with the product construction.

3.6 Example: Payroll information: a person’s name, payrate, and hours worked

Domain Payroll-record= Stringx Ratx Rat
(Note:Ratis the domain defined in Example 2.1 in Chapter 2)
Operations

new-employeeString— Payroll-record
new-employg@ame= (name minimum-wage0),
whereminimum-wage Ratis some fixed value frorRat
andoO is theRatvalue (makera(0) (1))

update-payrate Ratx Payroll-record— Payroll-record
update-payratépay, employeg- (employeg 1, pay, employeg 3)
update-hours Ratx Payroll-record— Payroll-record
update-hourghours employeg- (employeg¢ 1, employeg 2, hours
addrat employeg3)

compute-payPayroll-record— Rat
compute-payemployeg= (employeg¢ 2) multrat (employeg 3)

This semantic algebra is useful for the semantics of a payroll program. The components of the
domain represent an employee’s name, hourly wage, and the cumulative hours worked for the
week. Here is an expression built with the algebra’s operations:

compute-pafupdate-hour€35, new-employdggJ.Doe"))

= compute-pafupdate-hour€35, ("J.Doe", minimum-wagg0)))

= compute-paf("J.Doe", minimum-wage0) | 1, ('J.Doe", minimum-wagge0) | 2,
35addrat("J.Doe", minimum-wagg0) |, 3)

= compute-paf/J.Doe", minimum-wagge35addrat0)

= minimum-wagenultrat35

3.2.2 Disjoint Union

The construction for unioning two or more domains into one domaidisgint union (or

sun).

36 Domain Theory |: Semantic Algebras

For domainsA andB, the disjoint union builder + builds the domakw B, a collection
whose members are the elementé\@ind the elements &, labeled to mark their origins. The
classic representation of this labeling is the ordered pairq a) for anacA and pne b) for a
beEB.

The associated operation builders include two assembly operations:

inA: A—=A+B
which takes aracA and labels it as originating from; that is, iPA(a) = (zerqg a), using
the pair representation described above.

inB:B—A+B
which takes &@€B and labels it as originating fro, that is, irB(b) = (one b).

The “type tags” that the assembly operations place onto their arguments are put to good use
by the disassembly operation, tbasesoperation, which combines an operationfwith one

on B to produce a disassembly operation on the sum domaid.idfa value fromA+B and

f(x)=e; andg(y)=e, are the definitions of A— C andg:B— C, then:

(cased of isA(X)— eq [isB(y)— e, end)
represents a value @. The following properties hold:

(cases iA(a) of iISA(X)— e, [| isB(y)— e, end)=[a/X]e, =f(a)
and

(cases iB(b) of iSA(X)— e; [isB(y)— & end)= [b/y]e; = g(b)

The casesoperation checks the tag of its argument, removes it, and gives the argument to the
proper operation.

Sums of an arbitrary number of domains can be built. We wAite A, + - - -+ A, t0
stand for the disjoint union of domais, A, - - -, A,. The operation builders generalize in
the obvious way.

As a first example, we alter tHeayroll-recorddomain of Example 3.6 to handle workers
who work either the day shift or the night shift. Since the night shift is less desirable, employ-
ees who work at night receive a bonus in pay. These concepts are represented with a disjoint
union construction in combination with a product construction.

3.7 Example: Revised payroll information

Domain Payroll-rec=Stringx (Day+ Night) x Rat
whereDay= RatandNight= Rat
(The namesDay and Night are aliases for two occurrences Bat We use
dwage= Day andnwage= Nightin the operations that follow.)
Operations

newemp String— Payroll-rec
newemjgname= (name inDay(minimum-wagg 0)

move-to-dayshiftPayroll-rec— Payroll-rec

3.2.2 Disjoint Union 37

move-to-dayshifemployeg-(employe¢1,
(casesémployeg 2) of iDay(dwagg— inDay(dwageg
[isNightinwagg— inDay(nwagg end),
employeq 3)

move-to-nightshiftPayroll-rec— Payroll-rec
move-to-nightshifemployeg- (employeg 1,
(casesémployeg 2) of isDay(dwagg— inNight(dwagég
[isNightitnwagg— inNight(nwagg end),
employeq 3)

compute-payPayroll-rec— Rat
compute-pagemployep- (casesémployeé 2) of
isDay(dwage— dwagemultrat (employeq, 3)
[isNight(nwagg— (nwage
multrat 1.5) multrat (employeg, 3)
end)

A person’s wage is labeled as being either a day wage or a night wage. A new employee
is started on the day shift, signified by the use d@ary in the operatiomewemp.The opera-
tions move-to-dayshifand move-to-nightshifadjust the label on an employee’s wage. Opera-
tion compute-paycomputes a time-and-a-half bonus for a night shift employee. Here is an
example: ifjdoe is the expressiomewemf'J.Doe") =("J.Doe", inDay(minimum-wagg 0),
andjdoe-thirtyis update-hour&30, jdoe), then:

compute-pafjdoe-thirty)
= (casegdoe-thirty| 2 of
isDay(wage— wage multrat(jdoe-thirty} 3)
[isNighttiwage— (wage multratl.5) multrat (jJdoe-thirty| 3)
end)
= (casesinDay(minimum-waggof
isDay(wagg— wage multrat30
[isNighttwage— wage multratl.5 multrat 30
end)
= minimum-wagenultrat 30

The tag on the component Day(minimum-wagk of jdoe-thirtys record helps select the
proper pay calculation.

The primitive domainTr can be nicely modelled using thénit domain and the disjoint
union construction.

3.8 Example: The truth values as a disjoint union

38 Domain Theory |: Semantic Algebras

Domain Tr=TT+ FF
whereTT=Unit andFF= Unit
Operations

true: Tr
true= inTT()

false: Tr
false= inFF()

not: Tr—Tr
not(t)= caseg of isTT()— inFF() [| isSFF()— inTT() end

or: TrxTr—Tr
or(t, u)= caseg of
isTT)— inTT()
[isFF()— (casesu of isTT()— InTT() [] isFF()— inFF() end)
end

The dummy argument () isn’t actually used in the operations— the tag attached to it is the
important information. For this reason, no identifier names are used in the clausesasdise
statements; () is used there as well. We can also define the choice function:

(t—=e;]| &)= (casesd of isTT()— e, [| isFF()— & end)

As a third example, for a domaib with anerror element, the collection of finite lists of
elements fronD can be defined as a disjoint union. The domain

D*=Unit+D+(DxD)+(Dx(DxD))+ - - -

captures the idealUnit represents those lists of length zero (namely the empty Dstpntains
those lists containing one elemebtx D contains those lists of two elements, and so on.

3.9 Example: Finite lists

Domain D*
Operations
nil:D*
nil = inUnit()
cons. DxD*—D"
condd, I)= cased of
isUnit()— inD(d)
[isD(y)— inDxD(d,y)
[isDxD(y)— inDx(DxD)(d,y)
l - -end

hd: D*—D

3.2.2 Disjoint Union 39

hd(l)= cased of
isUnit()— error
[isD(y)—y
[isDxD(y)—fst(y)
[isDx(DxD)(y)— fst(y)
l - -end

tl: D*— D"
tl ()= cased of
isUnit()— inUnit()
isD(y)— inUnit()
[isDxD(y)— inD(sndy))
[isDx(DxD)(y)— inDxD(sndy))
l - -end)

null: D*—Tr
null()= caseg of
isUnit()— true
[isD(y)— false
[isDxD(y)— false
l - -end

Even though this domain has an infinite number of components archfesexpressions
have an infinite number of choices, the domain and codomain operations are still mathemati-
cally well defined. To implement the algebra on a machine, representations for the domain
elements and operations must be found. Since each domain element is a tagged tuple of finite
length, a list can be represented as a tuple. The tuple representations lead to simple implemen-
tations of the operations. The implementations are left as an exercise.

3.2.3 Function Space

The next domain construction is the one most removed from computer data structures, yet it is
fundamental to all semantic definitions. It is thenction space builderwhich collects the
functions from a domai@ to a codomairB.

For domainsA andB, the function space builder creates the domaiA— B, a collec-
tion of functions from domaii\ to codomainB. The associated disassembly operation is just
function application:

():(A—>B)xA—B
which takes aricA— B and ana=A and producef{a) € B

An important property of function domains is the principleeoftensionality: for any f
andg in A— B, if for all acA, f(a) =g(a), thenf=g. Functions are understood in terms of their

40 Domain Theory I: Semantic Algebras

argument-answer behavior, and an extensional function domain never contains two distinct
elements representing the same function.
The assembly principle for functions is:

if eis an expression containing occurrences of an identifisuch that whenever a value
acA replaces the occurrencesin e, the value §/Xle€ B results, then)x.€) is an ele-
ment inA— B.

The form ¢.x.6 is called anabstraction. We often give names to abstractions, $ayix.e),
or f(xX)=e, where f is some namenot used in e. For example, the function
plustwdn) = n plustwo is a member oNat— Nat because plustwo is an expression that has
a unique value ifNat whenn is replaced by an element dfat. All of the operations built in
Examples 3.6 through 3.9 are justified by the assembly principle.

We will usually abbreviate a nested abstractibr.(Ly. €) to (AX.Ay. €.

The binding of argument to binding identifier works the expected way with abstractions:
(An. nplus twgone= [one/rin plus two= one plus two Here are other examples:

1. (m.(An.ntimes im plus twd)(one
= (An. ntimes one plus twd
= (one plus twptimes(one plus tw
= threetimes(one plus twd = threetimesthree= nine

2. (\m.An.(mplus mtimesn(ong(three
= (An.(one plus ongtimes r)(threg
= (An. twotimes jthreg
= two times three- six

3. (um.(An.nplus n(m)) = (Am.m plus m

4. (pArqg.pplusq(rplusong = (Ag.(rplusong plusg

Here is a bit of terminology: an identifieris boundif it appears in an expressiain
(Ax.6). An identifier isfreeif it is not bound. In example 4, the occurrencespodndq are
bound (toAp and Ag, respectively), but is free. In an expression such as<{x.X), the
occurrence ofx is bound to the innermost occurrence jof, hence {xAx.X)(zerg(ong =
([zeroM(Ax.x)(ong = (Ax.X)(one = one

Care must be taken when simplifying nested abstractions; free identifiers in substituted
arguments may clash with inner binding identifiers. For example, the proper simplification of
(AX.(Ay AX. Y)X) is (AX. (Axi. X)) andnot (Ax.(AX.X). The problem lies in the re-use ®fin two
different abstractions. The solution is to rename the occurrences of identifre(ax. M) if x
clashes with a free occurrence »fin the argument that must be substituted iiMo For
safety’s sake, avoid re-using binding identifiers.

Finally, we mention again the abbreviation introduced in Section 2.2.2 of Chapter 2 for
function creation:

[n=V]r abbreviates Am. mequalsn—v | r(m))

Thatis, (h=V]r)(n) = v, and (hi Vv]r)(m) = r(m) whenms= n.

3.2.3 Function Space 41

Let's look at some algebras. Example 3.10 is simple but significant, for it illustrates
operations that will appear again and again.

3.10 Example: Dynamic arrays

Domain Array= Nat— A

whereA is a domain with arrror element
Operations

newarray. Array
newarray= An. error

access Natx Array— A
accesgn, r)=r(n)

update Natx Ax Array— Array
updatgn, v, r) = [N V]r

A dynamic arrayis an array whose bounds are not restricted, so elements may be inserted into
any position of the array. The array uses natural number indexes to access its contents, which
are values fromA. An empty array is represented by the constawarray It is a function

and it maps all of its index arguments éoror. The accessoperation indexes its array argu-
mentr at positionn. Operationupdatecreates a new array that behaves just likethen

indexed at any position but When indexed at position, the new array produces the value
Here is the proof:

1. for anymy, ng€ Natsuch thatmy= ng,
accesgmg, updateng, v, 1))
= (updatgng, v, r))(mg) by definition ofaccess
= ([ngr=V]r)(my) by definition ofupdate
= (Am. mequalsng— v [| r(m))(my) by definition of function updating
=My equalsng— v [r(my) by function application
=false—=v || r(mp)
= r(mp)

2. accesgng, update(ng, v, 1))
= (updatg(no, v,))(no)
= ([not=>V]r)(no)
= (Am. mequalsng— v [| r(m))(ng)
= Ng equalsng— v [r(ng)
=true—v [| r(ng)
=V

The insight that an array is a function from its index set to its contents set provides interesting
new views of many computer data structures.

42 Domain Theory I: Semantic Algebras

3.11 Example: Dynamic array with curried operations

Domain Array= Nat— A
Operations

newarray. Array
newarray= An. error

access Nat— Array— A
access An.Ar.r(n)

update Nat— A— Array— Array
update= ANAVAL. [N V]r

This is just Example 3.10 rewritten so that its operations accept their argumerus- in
ried form,that is, one argument at a time. The operaticness Nat— Array— A has a func-
tionality that is more precisely stated ascess Nat— (Array— A); that is, the default pre-
cedence on the arrow is to the right. We can raeces% functionality as saying thaiccess
takes aNat argument and then takes Amray argument to produce akvalue. Butaccesgk),
for some numbelk, is itself a well-defined operation of functionalitsrray— A. When
applied to an argument operationaccesék) looks into positionk within r to produce the
answer éccesék))(r), which isr(k). The heavily parenthesized expression is hard to read, so
we usually writeacces&)(r) or (accessk r) instead, assuming that the default precedence of
function application is to the left.

Similar conventions apply tapdate. Note thatupdate Nat— A— Array— Array is an
operation that needs a number, a value, and an array to build a new arpaatgn:):

A— Array — Array is an operation that builds an array updated at indexXupdaten: v):

Array— Array is an operation that updates an array at positionwith value wi;
(updaten: vi r1) € Array is an array that behaves just like arrayexcept at positiom,

where it has stored the valwe Curried operations likaccessandupdateare useful for situa-

tions where the data values for the operations might be supplied one at a time rather than as a

group.

3.2.4 Lifted Domains and Strictness

In Section 2.3 of Chapter 2 the eleménfread “bottom”) was introduced. Its purpose was to
represent undefinedness or nontermination. The additigntofa domain can itself be for-
malized as a domain-building operation.

For domainA, the lifting domain builder () creates the domaiA, a collection of the
members ofA plus an additional distinguished elemdnt The elements oA in A are called
proper elements} is theimproper element.

The disassembly operation builder converts an operationAoto one onA; for
(Ax.6:A—B:

(Ax.6: A =B is defined as

3.2.4 Lifted Domains and Strictness43

(x9l=]
(\x.9a=[a/Xe fora=|

An operation that maps pargument to g answer is calledtrict. Operations that map to a
proper element are callewnstrict. Let's do an example.

(Am. zerg((An.ong])
= (\m.zer9|, by strictness
-1

On the other hand)p. zerg : Naf — Na is nonstrict, and:

(Ap.zerg((An.ong])
= [(An.ong| /p]zerg by the definition of application

= Zero

In the first example, we must determine whether the argumenkitozer9g is proper or
improper before binding it ton. We make the determination by simplifying the argument. If
it simplifies to a proper value, we bind it to; if it simplifies to |, we take the result of the
application to be|. This style of “argument first” simplification is known asaall-by-value
evaluation. It is the safe way of simplifying strict abstractions and their arguments. In the
second example, the argumeriir((ong |) need not be simplified before binding it o

We use the following abbreviation:

(letx=e; iney) for (X &)e

Call this alet expression. It makes strict applications more readable because its “argument
first” appearance matches the “argument first” simplification strategy that must be used. For
example:

1. letm= (Ax.zerg] in mplusone
= letm= zeroin m plus one
= zero plus one- one

2. letm=one plustwadn letn= (Ap.m| inmplusn
= letm=threein letn= (\p. M| in mplusn
= letn= (Ap.threg| in three plusn
=letn= | inthreeplusn
=1

Here is an example using the lifting construction; it uses the algebra of Example 3.11:

3.12 Example: Unsafe arrays of unsafe values

Domain Unsafe- Arrayl,
whereArray= Nat— Tr is from Example 3.11
(Ain Example 3.11 becomds)
andTn= (B U {error})|

44 Domain Theory I: Semantic Algebras

Operations

new-unsafeUnsafe
new-unsafe newarray

access-unsaféNat — Unsafe>Tr:
access-unsateAn.Ar. (accessr)

update-unsafeNat| — Tri— Unsafe-> Unsafe
update-unsafe An.AtAr. (updaten t r)

The algebra models arrays that contain truth values that may be improper. The copstant
unsafebuilds a proper array that maps all of its arguments tcetier value. An array access
becomes a tricky business, for either the index or the array argument may be improper. Opera-
tion access-unsafmust check the definedness of its argumenésdr before it passes them

on to accesswhich performs the actual indexing. The operatigpdate-unsafés similarly
paranoid, but an improper truth value may be stored into an array. Here is an evaluation of an
expression (lehot = At. not(t)):

let start-array= new-unsafe
in update-unsaf@ne plus twi(not(|))(start-array)

= let start-array= newarray
in update-unsaf@ne plus twi(not(]))(start-array)

= |et start-array= (An. error)
in update-unsaf@ne plus twi(not(]))(start-array)

= update-unsaf@ne plus twi(not(|))(An. error)
= update-unsafghreg(not(|))(An. error)

= update(threg(not(]))(An. error)

= [three— not(|)] (An. error)

= [three— |] (An. error)

You should study each step of this simplification sequence and determine where call-by-value
simplifications were used.

3.3 RECURSIVE FUNCTION DEFINITIONS

If you read the description of the assembly principle for functions carefully, you will note that
the definitionf(xy, - - -, X,) = € doesnot permitf itself to appear ire. There is good reason: a
recursive definition may not uniquely define a function. Here is an example:

g(x) = x equals zere> one| g(xplus ong

This specification apparently defines a function in=NN,. The following functions all
satisfyq's definition in the sense that they have exactly the behavior required by the equation:

3.3 Recursive Function Definitions45

one if x=zero
(9= | otherwise

one if x=zero
209 = two otherwise

f3(X) = one
and there are infinitely many others. Routine substitution verified4hgaia meaning of:

for anyne Nat, n equals zere= onef] f3(n plus ong
= nequals zere=onef] one by the definition off3
= one by the definition of the choice function

= f3(n)

Similar derivations also show thé&t andf, are meanings ofl. So which of these functions
doesq really stand for, if any? Unfortunately, the tools as currently developed are not sophis-
ticated enough to answer this question. The problem will be dealt with in Chapter 6, because
recursive function definitions are essential for defining the semantics of iterative and recursive
constructs.

Perhaps when you were reading the above paragraph, you felt that much ado was made
about nothing. After all, the specification gfcould be typed into a computer, and surely the
computer would compute functidp. However, the computer gives aperational semantics
to the specification, treating it as a program, and the function expressions in this chapter are
mathematical values, not programs. It is clearly important that we use only those function
expressions that stand for unique values. For this reason, recursive function specifications are
suspect.

On the positive side, it is possible to show that functions defined recursively over abstract
syntax argumentdo denote unique functions. Structural induction comes to the rescue. We
examine this specific subcase because denotational definitions utilize functions that are recur-
sively defined over abstract syntax.

The following construction is somewhat technical and artificial, but it is sufficient for
achieving the goal. Let a language L be defined by BNF equations:

B, ::= Optiony4 | Optiony, | - - - | Optiony,
B, ::= Optiony | Optiony, | - - - | Optionyy,
B, ::= Option, 1 | Option,» | - - - | Optionm,

and letB; be a function symbol of type B>D; for all 1<i<n. For an Option;, let
Sj1, Sj2: - s Sjk be the nonterminal symbols used@ption;, and letB;; represent thé,
appropriate for each;5(for example, if § =B, thenB;; =By,).

3.13 Theorem:

If, for eachB; in L’s definition and each Optignof B;’s rule, there exists an equation of
form:

46 Domain Theory I: Semantic Algebras

Bi(Option;)= fj (Bj; 1(Sj 1), Bij 2(Sj2), - * -, Bijk(Sj))

where f; is a function of functionality | xDj,x - - -xDj — D;, then the set of equa-
tions uniquely defines a family of functioBs B;— D; for 1<si<n.

Proof: The proof is by a simultaneous structural induction on the rules of L. We show
that eachB;(Option;) is uniquely defined for a syntax tree of for@ption;. Let
Bi(Option;;) be ddined as above. By the inductive hypothesis, fel £k, eachBy; (S;)

is uniquely defined. Sincg; is a function, its application to th&;; (S;)’s yields a
unique answer, sB;(Option;) is uniquely defined. The equations for all tg@tion;’s

of rule B, taken together define a unique functidn B,— D;. []

3.4 RECURSIVE DOMAIN DEFINITIONS

We have used an equation format for naming semantic domains. For exaPg@jeoll-
record= Stringx Ratx Rat associates the nanfeayroll-record with a product domain. In

later chapters, we will see that certain programming language features require domains whose
structure is defined in terms of themselves. For examplist=Unit+ (Ax Alist) ddines a
domain of linear lists oA-elements. Like the recursively defined operations mentioned in the
previous section, a domain may not be uniquely defined by a recursive definition.

What's more, equations such &= F— Nat, specifying the collection of functions that
accept themselves as arguments to produce numeric answers, apparently have no solution at
alll' (It is not difficult to show that the cardinality of the collection of all functions frénto
Nat is larger tharF's cardinality.) Chapter 11 provides a method for developing solutions to
recursive domain definitions.

3.5 SUMMARY

Here is a summary of the domain constructions and their operations that were covered in this
chapter.

1. Domain construction primitive domain, e.g., natural numbers, truth values

Operation builders the operations and constants that are presented in the semantic alge-
bra. For example, the choice function is presented with The algebra; it is

(e —= e &s)EA, fore,€B, e,,65€A.

Simplification properties as dictated by the definition of the operations, engitrue)
simplifies tofalsebecause the paitr(ie, falsg is found in the graph of the operatioot
The simplification properties of the choice function are:

true—e]l s=6

3a.

false—6e [e3=63

Domain construction: product spate B

Operation builders:

fst: AxB—A

snd: AxB—B

(a, b)e Ax B for acA andbeB

Vi A xAox - xAx o xA, —= A, forl<isn

Simplification properties:

fst(a, b)=a

snda, b)=b

(a, @, -, &, -, a,)li=a, forl=i=n

Domain construction: disjoint union (sum) sp#ceB

Operation builders:
inA:A—A+B
inB: B—A+B
(cased of isA(X)— ¢e; [isB(y)— & end)c C
for deA+B, (Ax.e):A—C, and Qy.e):B—C

Simplification properties:
(cases iA(a) of iSA(X)— e, [isB(y)— &, end)= [a/X]e;
(cases iB(b) of iSA(X)— e; [| isB(y)— & end)= [b/y]es

Domain construction: list spaéé

Operation builders:
nil : A"

cons. Ax A" — A"
hd: A* = A

th: A" = A"

null: A* —=Tr

Simplification properties:
hd(acons)=a

tl(acons) = |

null(nil) = true
null(acons) = false

Domain construction: function spade- B

3.5 Summary 47

48 Domain Theory I: Semantic Algebras

Operation builders:
(Ax.e € A— B such that for albeA, [a/X]ehas a unique value iB.
g(a)eB, forg:A—B and ac A

(g @) abbreviateg(a)

[X Vv]g abbreviatesXx. x» equals ¥= v [g(x))

[a/X]e denotes the substitution of expressimor all free occurrences of identifiein
expressiore

Simplification properties:

g(a) = [a/Xe, wheregis defined equationally agx)=e
(Ax.€)a = [a/Xe

([x=vig)x =v

([xt=V1g)y = g(y), wherey=x

5. Domain construction: lifted spaég
Operation builder:
(Ax.9:A—B|, for (Ax.§: A—>B

(letx=e; iney) abbreviatesXx.&)e;
(Note: the above expression occasionally abbreviateg)e; whene;EA andA is
anunlifteddomain; that isA has no| element.)

Simplification properties:
(Ax.&)e, = [e1/X] &, whene, is a proper member &k, i.e., e, = L

(%9l =1

(letx= ey in &) = [e1/X]€;, Wheney is a proper member &%

(letx= | ine) = |

SUGGESTED READINGS

Semantic domains: Gordon 1979; Scott 1976, 1982; Stoy 1977; Strachey 1973; Tennent
1981

Semantic algebras: Bauer & Wossner 1982; Burstall & Goguen 1977, 1981; Cohn 1981,
Gratzer 1979; Mosses 1979a, 1983, 1984

EXERCISES

1. Given the algebras of natural numbers and truth values, simplify the following expres-
sions. Show all the steps in your simplification.

Exercises 49

a. ((sixequalgtwo plus ong) — one[(three minus ong plustwo
b. (twoequalgtrue— one|] two)) andtrue
c. not(fals§ — nof(true) [| not(true)

2. Define primitive semantic algebras for each of the following:

a. The musical notes playable on a piano.
b. The U.S. (or your favorite) monetary system.
c. The “colors of the rainbow.”

3. Using the operations defined in Section 3.5, simplify the following (note that we use
identifiersm,nENat, t&Tr, p&TrxTr, r&Tr+Nat, andx,yENaH):

a. fst((Am.zergtwo, (An.n))
b. (\p.(sndp fstp)(true, (two equals ong
((\r. cases of
isTr(t) — (Ami. zerg
[isNat(n) — (Am.n
end)(irNat(two)))(ong
d. casesfalse—inNat(ong [inTr(falsg) of
isTr(t) —trueort
[isNat(n) — falseend
XAy M(X))(oné(An.nplus twd
((An.[zeror> n](Am. zerg)(two)) zero
(\x.(Am. mequals zere> x | ong(two))(])
(\m. ong(true— | [zerg
(%, ¥)- (v, 9)(L, (kn.ong)
letm= | in zero
let m= one plus twdn letn= m plus ondn (Am.n
l. letm= (Ax.X)zeroin letn= (mequals zere>one] |) in mplusn
m. letm= onein letm=m plus twoin m

T T TQe ™o

4. LetTr={tt, ff}. List all the elements in these domains:

Unit+((TrxTr)))
Unit+ (TrxTr)),
(Uniti + (Tl’i X Tl‘i))
Unit+Tr)x Tr
Unit— Tl’l
(Unit—Tr)|

~® o0 T

5. a. Complete the definition of the algebra in Example 3.7 by defining these operations:

50

10.

Domain Theory I: Semantic Algebras

i. update-payrateRatx Payroll-rec— Payroll-rec
ii. update-hours Ratx Payroll-rec— Payroll-rec

b. Use the completed algebra to define a payroll record stating that

i. “Jane Doe” has been assigned a payroll record.
ii. She is moved to the night shift.

iii. She works 38 hours that week.

iv. Her payrate goes to 9.00.

Next, write an expression denoting Jane Doe’s pay for the week.

c. What other operations should this algebra possess to make it more useful for defining
the semantics of a payroll system?

Using the algebra of Example 3.9, simplify these list-valued expressions:

a. (hd(one cons njlcons ni)

b. (. (nulll) — (zerocons njl]] (one cons nj)(tl(one cons nj)
c. ((onecongtwo cons ni)) cons ni)
d. (ML tI)(tl(zero cons n))

Design an algebra call&kt-of-A\whereA is any primitive domain) with operations:

empty-set Set-of-A
make-singletonA— Set-of-A
member-of A x Set-of-A>Tr

union: Set-of-A Set-of-A= Set-of-A

The operations are to satisfy the expected set theoretic properties, e.g., &&xAall
member-gf, make-singletofa)) = true. (Hint: use the domaiA— Tr in the definition.)

Modify the dynamic array algebra of Example 3.11 so that arrays carry with them upper
and lower bounds. The operations are altered so that:

a. newarray. Natx Nat— Array establishes an empty array with lower and upper
bounds set to the values of the two arguments.

b. accessand updateboth compare their index argument against the lower and upper
bounds of their array argument. (Hint: uagray = (Nat— A) x Natx Nat)

Use the algebra of payroll records in Example 3.6 and the array of Example 3.11 to
derive an algebra describing data bases of payroll records. A data base indexes employ-
ees by identity numbers. Operations must include ones for:

a. Adding a new employee to a data base.
b. Updating an employee’s statistics.
c. Producing a list of employee paychecks for all the employees of a data base.

Specify algebras that would be useful for defining the semantics of the grocery store
inventory system that is mentioned in Exercise 6 of Chapter 1.

11.

12.

13.

Exercises 51

a. Describe the graphs of the following operations:

i. (_—a[b:B—=D,fora b&eD

ii. fst: AxB—Aandsnd: AxB—B

iii. InA:A—A+B, inB: B— A+B, and (cases of isA(a) — f(a)
[isB(b) —g(b) end):A+B—C, forf.: A—=Candg: B—C

iv. (AX.E): A— B, for expressiork such that for alec A, [a/{ E is a unique value in
B

v. W.B:A =B, for(Ax.E):A—>B

b. Using the definitions in part a, prove that the simplification rules in Section 3.5 are
sound that is, for each equality =R, prove that the set-theoretic value lofequals
the set-theoretic value & (Note: most of the proofs will be trivial, but they are still
well worth doing, for they justify all of the derivations in the rest of the book!)

The assembly and disassembly operations of compound domains were chosen because
they possess certaimiversal propertiegthe term is taken frontategory theory see
Herrlich and Strecker 1973). Prove the following universal properties:

a. For arbitrary functiongy;:C—A and g,: C— B, there exists a unique function
f: C— Ax B such thafste f=g; andsnde f=g,.

b. For arbitrary functionsy;: A—C and g,: B— C, there exists a unique function
f: A+ B— C such thaf o inA=g; andf o inB= g,.

c. For arbitrary functiorg: Ax B— C, there exists a unique functidrA— B— C such
that f(a))(b)= g(a, b).

d. For arbitrary functiorg: A— B|, there exists a unique functidnA — B, such that
f(1) = | andf(a) = g(a), for acA.

The function notation defined in this chapter is a descendant of a symbol manipulation
system known as thtambda calculus. The abstract syntax of lambda expressions is
defined as:

E:=(BE)|M.E)]|I
Lambda expressions are simplified using fheule:
(M.E1Ep) = [ER/1]E,

which says that an occurrence oklE;)E,) in a lambda expression can be rewritten to
[E5/I]E in the expression. All bound identifiers i Ere renamed so as not to clash
with the free identifiers in E We write M="N if M rewrites toN due to zero or more
applications of th@-rule.

a. Using thep-rule, simplify the following expressions to a finalgrmal form, if one
exists. If one does not exist, explain why.

. (AX.(xy)(A\z.2

i ((AX. ((Ry. (x))x))(Az. W)

it ((((MF. (Ag. (. ((FX)(99)))) (Am (k. (n m))))(AN. J)p)
V. ((AX(xX) (AX.(XX))

52 Domain Theory |: Semantic Algebras

V. (M. ((Ag. ((F) @) (M. (Kh)) (Ax. (by-Y))
vi. (Mg (M. ((x(F (x)) (Ax. (F(x9)))) 9))

b. In addition to the3-rule, the lambda calculus includes the following two rules:

a-rule: (Ax.B) = (\y.[y/XE)
n-rule: @x.(EX) = E wherex does not occur free ik

Redo the simplifications of i-vi in a, making use of therule whenever possible.
What value do you see in therule?

c. A famous result regarding the lambda calculus is that it can be used to simulate com-
putation on truth values and numbers.

i. Lettrue be the name of the lambda expressibrAy. X) and letfalsebe the name
of the lambda expressionAXAy.y). Show that (fueE,)E,)="E; and
((falsek;) E;) ="E,. Define lambda expressionsot, and, and or that behave
like their Boolean operation counterparts, e.g.hottrue)=>"false
((orfalse)true) =>"true, and so on.

ii. Let O be the name of the lambda expressi@dx.Xy.y), 1 be the name of the
expressionXx.Ay.(xy)), 2 be the name of the expressidx(\y.(x(xy))), 3 be the
name of the expressiorhX.Ay.(X(x(xy)))), and so on. Prove that the lambda
expressiorsuccdefined asXzAx.Ay.(x((zX)y))) rewrites a number to its succes-
sor, that is, $ucc)="n+1. There also exists a lambda expressmad such
that (pred 0)=>"0 and pred n+1) ="n (but we won't give it here, as it is some-
what ungainly).

d. Recursively defined functions can also be simulated in the lambda calculus. First, let
Y be the name of the expressidit.((AX. (f (X X)) (AX. (f (XX))))).

i. Show that for any expressiof, there exists an expressiow such that
(YE)="(WW), and that WW="(EWW). Hence, YE ="
E(E(EC- - -E(WWW) - - -))).

ii. Using the lambda expressions that you defined in the previous parts of this exer-
cise, define a recursive lambda expressioid that performs addition on the
numbers defined in part i of b, that isafd m) n) ="m+n. (Hint: first define an
expressiorlF such that ((F0) E;) E;)="E; and (((Fn+1) E;) E;)="E,.) Say
that your definition ofadd has the formadd= AxAy. - - -add - - -. Let ADD be
the lambda expression Y(AhAxAy. - -h-->)). Show that
((ADD m) n) ="m+n.

14. a. Give examples of recursive definitions of the form - - -n - - - that have no solu-
tion; have multiple solutions; have exactly one solution.

b. State requirements under which a recursively defined funtthat— A has a unique
solution. Use mathematical induction to prove your claim. Next, generalize your
answer for recursively defined functiogsA® — B. How do your requirements resem-
ble the requirements used to prove Theorem 3.137?

15. Show that each of the following recursively defined sets has a solution.

Exercises 53

Nlist= Unit + (N x Nlist)
N= Unit+N

A=A

Blist= B x Blist.

oo oW

Do any of them have a unique solution?

Chapter 4

Basic Structure of Denotational Definitions

This chapter presents the format for denotational definitions. We use the abstract syntax and
semantic algebra formats to define the appearance and the meaning of a language. The two are
connected by a function called tlaluation function After giving an informal presentation of

an application of the valuation function, we present the denotational semantics of two simple
languages.

4.1 THE VALUATION FUNCTION

The valuation function maps a language’s abstract syntax structures to meanings drawn from
semantic domains. The domain of a valuation function is the set of derivation trees of a
language. The valuation function is defined structurally. It determines the meaning of a
derivation tree by determining the meanings of its subtrees and combining them into a mean-
ing for the entire tree.

Some illustrations will make this point better than just words. A sentence in the language
of binary numerals is depicted in Diagram 4.1.

41 B 42 B
B B
B B
D D D Donepzero. pone
1 0 1 1 0 1

The tree’s internal nodes represent nonterminals in the language’s abstract syntax definition:

B& Binary-numeral
D& Binary-digit
B:=BD|D
D:=0]1
For this example, we take the somewhat artificial view that the individual binary digits are the
“words” of a binary numeral “sentence.”

The valuation function assigns a meaning to the tree by assigning meanings to its sub-
trees. We will actually use two valuation function®, which maps binary digits to their

54

4.1 The Valuation Function 55

meanings, an@, which maps binary numerals to their meanings. The distinct valuation func-
tions make the semantic definition easier to formulate and read.

Let's determine the meaning of the tree in Diagram 4.1 in a “bottom-up” fashion. First,
the meaning of the digit subtree:

D

0

is the numberero. We might state this as:
D(D) =zero
0

That is, theD valuation function maps the tree to its meaningro. Similarly, the meanings
of the other binary digits in the tree avee that is:

D(D) =one
1

We will find it convenient to represent these two-dimensional equations in one-dimensional
form, and we write:

D[O] = zero
D[1] = one

The double brackets surrounding the subtrees are used to clearly separate the syntax pieces
from the semantic notation. The linearized form omits the D nonterminal. This isn't a prob-
lem, as theD valuation function maps only binary digits to meanings— D’s presence is
implied byD'’s.

To help us note our progress in determining the meaning of the tree, Diagram 4.2 shows
the meanings placed next to the nonterminal nodes. Now that we know the meanings of the
binary digit subtrees, we next determine the meanings of the binary numeral trees. Looking at
the leftmost B-tree, we see it has the form:

B
pone

1

The meaning of this tree is just the meaning of its D-subtree, thahis, In general, for any
unary binary numeral subtree:

56 Basic Structure of Denotational Definitions

B(B) =D (D)

D

that is,B[D] = D[D]. Diagram 4.3 displays the new information.

(43) B (4.4) B¢
B Btwo
gone gone
Done pyzero pyone ponepzero pone
1 0 1 1 0 1

The other form of the binary numeral tree is:

B

The principle of binary arithmetic dictates that the meaning of this tree must be the meaning of
the left subtree doubled and added to the meaning of the right subtree. We write this as
B[BD] = (B[B] timestwg plusD[D]. Using this definition we complete the calculation of
the meaning of the tree. The restig, is shown in Diagram 4.4.

Since we have defined the mappings of the valuation functions on all of the options listed
in the BNF rules for binary numerals, the valuation functions are completely defined.

We can also determine the meaning of the tree in Diagram 4.1 in a “top-down” fashion.
The valuation functions are applied to the tree in Diagrams 4.5 through 4.8 and again show
that its meaning iéive.

45)B(B) (4.6) (O times two plus O
B B(B) D(D)

B B 1

D D D D D

4.2 Format of a Denotational Definition 57

(4.7)(O times twQ plusO (4.8) (O times twg plusO
(O times twg plusO (O times twg plusO one
B (B) one zero
D D(D) D(D)
1 0 1

4.2 FORMAT OF A DENOTATIONAL DEFINITION

A denotational definitiorof a language consists of three parts: the abstract syntax definition
of the language, the semantic algebras, and the valuation function. As we saw in the previous
section, the valuation function is actually a collection of functions, one for each syntax
domain. A valuation functio® for a syntax domain D is listed as a set of equations, one per
option in the corresponding BNF rule for D.

Figure 4.1 gives the denotational definition of binary numerals.

The syntax domains are the ones we saw in the previous section. Only one semantic alge-
bra is needed— the algebra of natural numidas Operationgninusanddiv are not listed in
the algebra, because they aren’t used in the valuation functions.

It is instructive to determine once again the meaning of the tree in Diagram 4.1. We
represent the tree in its linear form [101], using the double brackets to remind us that it is
indeed a tree. We begin with:

B[101] = (B[[10] timestwo) plus D[1]

The B[BD] equation of theB function divides [101] into its subparts. The linear representa-
tion of [101] may not make it clear how to split the numeral into its two subparts. When in
doubt, check back with the derivation tree! Checking back, we see that the division was per-
formed correctly. We continue:

(B[10] timestwo) plus D[[1]
= (((B[[1] timestwo) plus D[0]) timestwo) plus D[1]
= (((D[1] timestwo) plus D[[0]) timestwo) plus D[1]
= (((onetimestwo) plus zerg timestwo) plus one
= five
The derivation mimics the top-down tree transformation seen earlier.

The “bottom-up™ method also maps [101] tive. We write a system of equations that
defines the meanings of each of the subtrees in the tree:

D[O] = zero
D[1] = one

58 Basic Structure of Denotational Definitions

Figure 4.1

Abstract syntax:
B& Binary-numeral
D& Binary-digit
B:=BD|D
D:=0]1

Semantic algebras:

I. Natural numbers
Domain Nat= IN
Operations
zerq one two, - - - : Nat
plus, times. Natx Nat— Nat

Valuation functions:

B: Binary-numeral- Nat
B[BD] = (B[B] times tw9 plus D[D]
B[D] = D[D]
D: Binary-digit— Nat
D[O] = zero
D[1] = one

B[1] = D[1]
B[10] = (B[1] timestwo) plus D[O]
B[101] = (B[10] timestwo) plus D[[1]

If we treat eactD[d] and B[[b] as a variable name as in algebra, we can solve the simultane-
ous set of equations:

D[O] = zero
D[[1] = one
B[1] = one
B[10] = two
B[101] = five

Again, we see that the meaning of the treévs.

4.3 A Calculator Language 59

4.3 A CALCULATOR LANGUAGE

A calculator is a good example of a processor that accepts programs in a simple language as
input and produces simple, tangible output. The programs are entered by pressing buttons on
the device, and the output appears on a display screen. Consider the calculator pictured in Fig-
ure 4.2. It is an inexpensive model with a single “memory cell” for retaining a numeric
value. There is also a conditional evaluation feature, which allows the user to enter a form of
if-then-else expression.

A sample session with the calculator might go:

press ON

press (4+12%2

press TOTAL (the calculator prints 32)
press 1+ LASTANSWER

press TOTAL (the calculator prints 33)
press |IFLASTANSWER+1,0,2+4

press TOTAL (the calculator prints 6)
press OFF

The calculator’'s memory cell automatically remembers the value of the previous expres-
sion calculated so the value can be used in a later expression. The IF and , keys are used to
build a conditional expression that chooses its second or third argument to evaluate based
upon whether the value of the first is zero or nonzero. An excellent way of understanding the
proper use of the calculator is to study the denotational semantics of its input language, which

Figure 4.2

60 Basic Structure of Denotational Definitions

is given in Figure 4.3.

The abstract syntax indicates that a session with the calculator consists of pressing the
ON key and entering an expression sequence eXpression sequeneone or more expres-
sions, separated by occurrences of TOTAL, terminated by the OFF key. The syntax for an
expression follows the usual abstract syntax for arithmetic. Since the words of the language
are numerals, no BNF rule is given for the syntax domain Numeral.

The semantic algebras show that the calculator reasons with two kinds of semantic
objects: truth values and natural numbers. The phnasélat in the Nat algebra’s definition
reminds us that all occurrences of identifiein the valuation equations stand for an element
of domain Nat. The same holds for the phrase Tr. This convention is used in all the
remaining semantic definitions in this book.

We can learn much about the calculator language from its semantic algebras. Apparently,
the members oNat will be the meanings of numerals and expressions in the calculator
language, buflr has no obvious representation of its elements in the syntax. This suggests
that the calculator has some internal mechanism for doing logical reasoning, but the full power
of that mechanism is not given to the user. This is confirmed by the presence edjuhks
operation in the algebra fd¥at, the calculator can do arithmetic comparisons, but no com-
parison operator is included in the syntax. Therefore, we must take care to understand the syn-
tactic construct whose semantic equation utilizesetipgalsoperation.

There are four valuation functions for the language:

P: Program— Nat*

S. Expr-sequencer Nat— Nat*
E: Expressior> Nat— Nat

N: Numeral= Nat

A good part of the calculator's semantics can be understood from studying the functionalities
of the valuation functions. ThE function maps a program to its meaning, which is a list of
natural numbers. The reason for using the codoniti is found from the syntax: a pro-

gram has the form [ON S], where [S] stands for a sequence of expressions. If each expres-
sion has a numeric value, then a sequence of them is list of numbers. The list represents the
sequence of outputs displayed by the calculator during a session. This is confirmed by the
functionality of S, which maps an expression sequence and a number to the desired number
list. But what is the extra number used for? Recall that the calculator has a memory cell,
which retains the value of the most recently evaluated expression. The number is the value in
the memory cell. Perhaps the functionality should be written:

S: Expr-sequence- Memory-cell= Nat*, whereMemory-celk Nat

Two important features of denotational definitions are expressefsirfunctionality.
First, the global data structures in a language’s processor can be modelled as arguments to the
valuation functions. There are no “global variables” for functions, so all such structures must
be specified as arguments so that they are of use in the semantics. Second, the meaning of a
syntactic construct can be a functio8's functionality states that “the meaning of an expres-
sion sequence is a function from a memory cell to a list of numbers.” This seems confusing,
for we might think that the meaning of an expression sequence is a list of numbers itself and
not a function. The point is that the content of the memory cell is needed to evaluate the

4.3 A Calculator Language 61

Figure 4.3

Abstract syntax:

P< Program

SE Expr-sequence
EE€ Expression

NE Numeral

P:=ONS
S:=ETOTALS | E TOTAL OFF
E:=E+E | E*E | IFE;, B, E5 | LASTANSWER | (E) | N

Semantic algebras:

I. Truth values
DomainteTr=B
Operations

true, false Tr

Il. Natural numbers
Domainn& Nat
Operations
zerq one two, - - - : Nat
plus, times. Natx Nat— Nat
equals Natx Nat— Tr

Valuation functions:

P: Program- Nat*
P[ON S] = S[S](zero)
S: Expr-sequencer Nat— Nat*
S[E TOTAL S](n) = let ni= E[E](Nn) in nr consS[S]()
SJE TOTAL OFF](n) = E[E](n) cons nil
E: Expressior> Nat— Nat
E[E1+Ex1(n) = E[E1](n) plus E[E](n)
E[E1+Ex1(n) = E[E](n) timesE[E,](n)
E[IFE,, E, E](n)= E[E{](n) equals zere=E[E,](n) | E[E3](Nn)
E[LASTANSWER](n)=n
EL(E)I(n)= E[E](n)
EINI(n)=NIN]
N: Numeral= Nat (omitted— maps numeral N to correspondimg@ Nat)

62 Basic Structure of Denotational Definitions

sequence— the value in the cell may be accessed via the “LASTANSWER” key. The func-
tionality notes the dependence of the value of the expression sequence upon the memory cell.

Let's consider the semantic equations. The equatioRPfGMN S] states that the meaning
of a program session follows from the meaning of the expression sequence [S]. The equation
also says that the memory cell is initialized 2ero when the calculator is turned on. The
cell’'s value is passed as an argument to the valuation function for the sequence.

As indicated by the functionality fof, an expression sequence uses the value of the
memory cell to compute a list of numbers. The equationSfE TOTAL S] describes the
meaning of a sequence of two or more expressions: the meaning of the first one, [E], is
appended to the front of the list of values that follows from [S]. We can list the corresponding
actions that the calculator would take:

1. Evaluate [E] using celh, producing valuem.

2. Printnr out on the display.

3. Place into the memory cell.

4. Evaluate the rest of the sequence [S] using the cell.

Note how each of these four steps are represented in the semantic equation:

1. is handled by the expressi&jE](n), binding it to the variablen.
2. is handled by the expressiancons - - - .
3. and 4. are handled by the expressgjs](n:).

Nonetheless, the right-hand side $fE TOTAL S] is a mathematical value. Note that the
same value is represented by the expression:

E[EI(n) consS[S] (E[E](N))

which itself suggests that [E] be evaluatidice. This connection between the structure of
function expressions and operational principles will be examined in detail in later chapters. In
the meantime, it can be used to help understand the meanings denoted by the function expres-
sions.

The meaning ofS[E TOTAL OFF] is similar. Since [E] is the last expression to be
evaluated, the list of subsequent outputs is fulst

Of the semantic equations for expressions, the ones for [LASTANSWER] and
[IFE,, E;, E3] are of interest. The [LASTANSWER] operator causes a lookup of the value
in the memory cell. The meaning of the IF expression is a conditional. efalsoperation
is used here. The test value, {JE is evaluated and compared wittera If it equalszerqg
E[E-](n) is taken as the value of the conditional, e 3](n) is used. Hence, the expres-
sion [E;] in the first position of the conditional takes on a logical meaning in addition to its
numeric one. This is a source of confusion in the calculator language and is a possible area for
improvement of the language.

One last remark: equations such E§(E)](n)=E[E]J(n) may also be written as
E[(E)] = An.E[E](n), making use of the abstraction notation, or evenE§eE)] = E[E]
(why?). This will be done in later examples.

A simplification of a sample calculator program is instructional:

P[ON 2+1 TOTAL IF LASTANSWER , 2, 0 TOTAL OFF]
= §[2+1 TOTAL IF LASTANSWER , 2, 0 TOTAL OFF}ero

4.3 A Calculator Language 63

= letni= E[2+1](zero
in nconsS[IF LASTANSWER , 2, 0 TOTAL OFFJkr)

Simplifying E[2+1](zer9 leads to the valuthreg and we have:

let = threein n: cons§JIF LASTANSWER , 2, 0 TOTAL OFF])
= threeconsS[IF LASTANSWER , 2, 0 TOTAL OFFJihree
= threecons(E[IF LASTANSWER , 2, O]threg consnil)

If we work on the conditional, we see that:

E[IF LASTANSWER , 2, O]thred

= E[LASTANSWERY](threé equalszero— E[2](threé [| E[O](three
= threeequalszero— two || zero

= false—two [| zero= zero

This gives as the final result the list:

three congzero cons njl

Each of the simplification steps preserved the meaning Rff2+1 TOTAL
IF LASTANSWER, 2, 0 TOTAL OFF]. The purpose of simplification is to produce an
equivalent expression whose meaning is more obvious than the original’'s. The simplification
process is of interest in itself, for it shows how the calculator operates on input. If the denota-
tional definition is used as specificationfor the calculator, the definition plus simplification
strategy show a possibleplementatiorof the calculator. A simple-minded implementation
would use functions, parameters, and an evaluation strategy corresponding to the
simplification sequence just seen. It only takes a bit of insight, however, to notice that the
numeral argument can be converted into a global memory cell. The derivation of a processor
for a language from its denotational specification will be repeatedly touched upon in future
chapters.

SUGGESTED READINGS

Jones 1982a; Gordon 1979; Milne & Strachey 1976; Pagan 1981; Stoy 1977; Tennent 1977,
1981

EXERCISES

1. Use the binary numeral semantics in Figure 4.1 to determine the meanings of the follow-
ing derivation trees:

a. [0011]
b. [000]

64 Basic Structure of Denotational Definitions

c. [111]

2. Here is an alternative abstract syntax for the language of binary numerals:

N& Numeral

BE Bin-Numeral

De Bin-digit
N:=B
B:=DB|D
D:=0]1

Define the valuation function that maps a binary numeral to its value. (Hint: define
P: Numeral=Nat and B: Bin-numeral= (Valuex Scal§, where Value= Nat is the
value of the numeral, an8cale={one two, four, eight, - - -} remembers the scale (phy-
sical size) of the numeral.)

3. a. In a fashion similar to that in Figure 4.1, define a denotational semantics for the
language of base 8 numerals, Octal. Eédte the valuation functiok : Octal— Nat
b. Prove the following equivalenc&[015] = B[1101].
c. Construct an algorithm that maps an octal numeral to binary form. Use the respective
denotational semantics for Octal and Binary-numeral to prove that your algorithm is
correct.

4. Simplify these calculator programs to their meaningat :

a. [ON 1+(IFLASTANSWER, 4, 1) TOTALLASTANSWER TOTAL
5%2 TOTAL OFF]

b. [ONS5TOTALS5TOTAL 10 TOTAL OFF]

Cc. [ONLASTANSWERTOTAL OFF]

5. Augment the calculator so that it can compare two values for equality: add buatton
to its panel and augment the BNF rule for Expression to read: E :=| E;=E,

a. Write the semantic equation fB{E =E;].

b. What changes must be made to the other parts of the denotational definition to
accommodate the new construct? Make these changes. Do you think the new version
of the calculator is an improvement over the original?

6. Alter the calculator semantics in Figure 4.3 so that the memory cell argum8ratrntdE
becomes a memorstack that is, useNat® in place ofNat as an argument domain ®
andE.

a. Adjust the semantics so that the last answeushedonto the memory stack and the
LASTANSWER button accesses the top value on the stack.

b. Augment the syntax of the calculator language so that the user can explicitly pop
values off the memory stack.

7.

10.

Exercises 65

Use the denotational definition in Figure 4.3 to guide the coding of a test implementation
of the calculator in Pascal (or whatever language you choose). What do the semantic
algebras become in the implementation? How are the valuation equations realized? What
does the memory cell become? What questions about the implementatsm'tthe
denotational definition answer?

Design, in the following stages, a calculator for manipulating character string expres-
sions:

a. List the semantic algebras that the calculator will need.

b. List the operations that the calculator will provide to the user.

c. Define the abstract syntax of these operations.

d. Define the valuation functions that give meaning to the abstract syntax definition.

Can these four steps be better accomplished in another order? Is the order even impor-
tant?

If you are familiar with attribute grammars, describe the relationship between a denota-
tional definition of a language and its attribute grammar definition. What corresponds to
inherited attributes in the denotational definition? What are the synthesized attributes?
Define attribute grammars for the binary numerals language and the calculator language.

Consider the compiler-oriented aspects of a denotational definition: if there existed a
machine with hardwired instructionglus, times,and representations of numbers, the
definition in Figure 4.1 could be used as a syntax-directed translation scheme for binary
numbers to machine code. For example:

B[101] = (((one times twpplus zergtimes tw) plus one

is the “compiled code” for the input program [101]; the syntax pieces are mapped to
their denotations, but no simplifications are performed. The machine would evaluate this
program tofive. With this idea in mind, propose how a compiler for the calculator
language of Figure 4.3 might be derived from its denotational definition. Propose a
machine for executing compiled calculator programs.

Chapter 5

Imperative Languages

Most sequential programming languages use a data structure that exists independently of any
program in the language. The data structure isn’'t explicitly mentioned in the language’s syn-
tax, but it is possible to build phrases that access it and update it. This data structure is called
the store,and languages that utilize stores are caifegerative. The fundamental example of

a store is a computer’s primary memory, but file stores and data bases are also examples. The
store and a computer program share an intimate relationship:

1. The store is critical to the evaluation of a phrase in a program. A phrase is understood in
terms of how it handles the store, and the absence of a proper store makes the phrase
nonexecutable.

2. The store serves as a means of communication between the different phrases in the pro-
gram. Values computed by one phrase are deposited in the store so that another phrase
may use them. The language’s sequencing mechanism establishes the order of communi-
cation.

3. The store is an inherently “large” argument. Only one copy of store exists at any point
during the evaluation.

In this chapter, we study the store concept by examining three imperative languages. You
may wish to study any subset of the three languages. The final section of the chapter presents
some variants on the store and how it can be used.

5.1 ALANGUAGE WITH ASSIGNMENT

The first example language is a declaration-free Pascal subset. A program in the language is a
sequence otommands.Stores belong to the domaiBtore and serve as arguments to the
valuation function:

C: Command— Storg—> Storg£

The purpose of a command is to produce a new store from its store argument. However, a
command might not terminate its actions upon the store— it can “loop.” The looping of a
command [C] with stores has semanticE€[C] s= |. (This explains why th&toredomain is
lifted: | is a possible answer.) The primary property of nontermination is that it creates a
nonrecoverable situation. Any commands]@llowing [C] in the evaluation sequence will
not evaluate. This suggests that the func@fC.]: Store— Store be strict; that is, given a
nonrecoverable situationC[C:] can do nothing at all. Thus, command composition is
C[C1:;C,] = CIC-] ° C[C4].

Figure 5.1 presents the semantic algebras for the imperative languag8tdoredomain
models a computer store as a mapping from the identifiers of the language to their values. The

66

5.1 A Language with Assignmen67

Figure 5.1

I. Truth Values
Domainte Tr=B
Operations

true, false: Tr
not: Tr—Tr

Il. Identifiers
Domaini € Id= Identifier

I1l. Natural Numbers
Domain n& Nat= IN
Operations

zerg one - - - : Nat

plus: Natx Nat— Nat

equals Natx Nat— Tr
IV. Store

Domainse Store= Id— Nat
Operations

newstore Store
newstore- Ai. zero

accessld— Store— Nat
access Ai. As. i)

update Id— Nat— Store— Store
update= Ai.ANAS.[i=n]s

operations upon the store include a constant for creating a new store, an operation for access-
ing a store, and an operation for placing a new value into a store. These operations are exactly
those described in Example 3.11 of Chapter 3.

The language’s definition appears in Figure 5.2.

The valuation functiorP states that the meaning of a program is a map from an input
number to an answer number. Since nontermination is possjbles also a possible
“answer,” hence the rightmost codomain Bfis Nat rather than jusNat. The equation foP
says that the input number is associated with identifier [A] in a new store. Then the program
body is evaluated, and the answer is extracted from the store at [Z].

The clauses of th€ function are all strict in their use of the store. Command composi-
tion works as described earlier. The conditional commands are choice functions. Since the

68 Imperative Languages

Figure 5.2

Abstract syntax:

P< Program

Ce Command
EE€ Expression
B& Boolean-expr
| € Identifier

NE Numeral

P.=C.

C :=C;;C, |if BthenC |if B then C; elseC, | I:=E | diverge
E:= E1+E2 I | | N

B:= E1=E2 | -B

Semantic algebras:
(defined in Figure 5.1)

Valuation functions:

P: Program- Nat— Nat|
P[C.] = An.let s= (updatg[A] n newstorgin
lets= C[C] sin (acces§Z] s)

C: Commane- Storg — Storg
CIC1;Ca] = As.C[C] (CIC19)
C[if BthenC] = As.B[B] s— C[C] s s
C[if B then C, elseC,] = As.B[B] s— C[C,]s[] C[Cz]s
Cl[l: =E] = As. updatl] (E[E] s) s
C[diverge] = As. |

E: Expressior> Store— Nat
E[E1+E,] = As.E[E]s plusE[E,]s
E[l] =As.acces{l] s
EIN] = As.N[N]

B: Boolean-exp#> Store— Tr
B[E1=E,] = As.E[E] s equalsE[E,] s
B[-B] = As. no{B[B] s)

N: Numeral= Nat (omitted

5.1 A Language with Assignmen69

expressiond,— e || &3) is nonstrict in arguments, andes, the value ofC[[if BthenC]sis s
when B[B] s is false, even if C[C] s=]. The assignment statement performs the expected
update; the fliverge] command causes nontermination.

TheE function also needs a store argument, but the store is used in a “read only” mode.
E’s functionality shows that an expression produces a number, not a new version of store; the
store is not updated by an expression. The equation for addition is stated so that the order of
evaluation of [E] and [[E,] is not important to the final answer. Indeed, the two expressions
might even be evaluated in parallel. A strictness check of the store is not needed, @cause
has already verified that the store is proper prior to passingt to

Here is the denotation of a sample program with the iryot

Pl[Z:=1;if A=0thendiverge; Z:=3.](two)

= lets= (updatdA] two newstorgin
lets = C[Z:=1; if A=0thendiverge; Z:=3]s
in acces§Z] s

Since (pdatdA] two newstorgis ([[A] - two] newstorg, that is, the store that maps [A]
to two and all other identifiers taerq the above expression simplifies to:

lets = C[Z:=1;if A=0thendiverge; Z:=3] ([[A] > two] newstor¢
in acces§Z] s
From here on, we usg to stand for ([[A]-> two] newstorg. Working on the value bound to
s leads us to derive:
Cl[Z: =1, if A=0then diverge; Z:=3]s,
= (As.C[if A=0Othendiverge; Z:=3] (C[Z:=1]9))s;
The stores, is a proper value, so it can be boundstgiving:
C[if A=0thendiverge; Z:=3] (C[Z:=1]s;)
We next work orC[[Z: =1]s;:

ClZ:=1]s,
= (As.updat§Z] (E[1]s) 9) 51
= updatefZ] (E[1] s1) s
= updatgfZ] (N[1]) s
= updatdZ] ones;
= [[Z] = on€] [[A] = two] newstore
which we calls,. Now:
C[if A=0thendiverge; Z:=3]s,
= (As.C[Z:=3] ((As.B[A =0]s— C[diverge] s s)s))s,
= C[Z:=3] ((As.B[A =0]s— C[diverge] s s)s,)
= C[Z:=3] (B[A=0]s,— C[diverge]s; [|)

Note thatC[diverge]s, = (As.|)s; = |, so nontermination is the result if the test has value

70 Imperative Languages

true. Simplifying the test, we obtain:

B[A =0]s;= (As.E[A] s equalsE[0] s)s;
= E[A] s, equalsg[0] s,
= (acces§A] s,) equalszero

Examining the left operand, we see that:

accesfA] s
= 5[A]
= ([[Z] = on€][[A] = two] newstorg [A]
= ([[A] = two] newstorg [A] (why?)
= two
Thus,B[A =0]s, = false implying thatC[if A=0then diverge]s, =s,. Now:

ClZ:=3]s,
= [[Z] = thre€]s,
The denotation of the entire program is:

lets = [[Z] = thre€]s, in acces§Z] s
= acces§Z] [[Z] +=thregs,

= ([[Z] = thre€]s;) [Z]

= three

We obtain a much different denotation when the input numbeeig
P[Z:=1;if A=0thendiverge; Z:=3.](zero
= lets = C[Z:=1;if A=0thendiverge;, Z:=3]s; in acces§Z] s
wheres; = [[A] = zerg newstore Simplifying the value bound te leads to:
ClZ:=1;if A=0thendiverge; Z:=3]s3
= C[[if A=0thendiverge; Z:=3]s4
wheres, = [[Z] = on€]s;. As for the conditional, we see that:
B[[A =0]ls; — C[diverge] s [| &4
= true— C[diverge]s; | &4
= C[diverge] s,
=(As.Ds
=1
So the value bound te is C[Z:=3]|. But C[Z:=3]| = (As. updat§Z] (E[3]s) 9)| = |.

Because of the strict abstraction, the assignment isn’'t performed. The denotation of the pro-
gramiis:

lets= | inacces§Z] s

5.1 A Language with Assignmen{71

which simplifies directly to|. (Recall that the form (let= e, in ;) representsix. &,)e;.) The
undefined store forces the value of the entire program to be undefined.

The denotational definition is also valuable for proving properties such as program
equivalence. As a simple example, we show for distinct identifiers [X] and [Y] that the com-
mandC[X: =0; Y:=X+1] has the same denotation @§Y:=1; X:=0]. The proof strategy goes
as follows: since both commands are functions in the dorSaome — Store, it suffices to
prove that the two functions are equal by showing that both produce same answers from same
arguments. (This is because of the principle of extensionality mentioned in Section 3.2.3.)
First, it is easy to see that if the store argumerit,isoth commands produce the answerlf
the argument is a proper value, let us cadl @nd simplify:

C[X:=0; Y:=X+1]s

= C[Y:=X+1] (C[X:=0]s)

= C[Y:=X+1] ([[X] = zerq]s)

= update[Y] (E[X+1] ([[X] > zerd]s)) ([[X] > zerq]s)
= updatd Y] one[[X] = zergs

= [[Y] > on€] [[X] +>zerds

Call this results; . Next:

CLY:=1; X:=0]s

= C[X:=0] (C[Y:=1]s)

= C[X:=0] ([[Y] = on€]s)

= [[X] > zerq [[Y] +>on€]s

Call this results,. The two values are defined stores. Are theyghmestore? It is not possi-

ble to simplify s; into s, with the simplification rules. But, recall that stores are themselves
functions from the domaiid— Nat. To prove that the two stores are the same, we must show
that each produces the same number answer from the same identifier argument. There are
three cases to consider:

1. The argument is [X]: thens[X] = ([[Y]tr=ong [[X]t+=zergs)[X] =
([[X] F=zerqs) [X] =zerg ands, [X] = ([[X] +=zerd [[Y] F=on€]s) [X] = zera
2. The argument is [Y]: thers;[Y] = ([[Y]tr=on€g[[X] t=>zergs)[Y] =one and
S [Y] = (L[X] >zerd [[Y] >on€ls)[Y] = ([[Y] = one]s)[Y] =one
3. The argument is some identifier [I] other than [X] or [Y]: thex[l] = s[I] and s,[I]
= s[I].
Sinces; ands, behave the same for all arguments, they are the same function. This implies

that C[X: =0; Y:=X+1] and C[Y: =1; X:=0] are the same function, so the two commands are
equivalent. Many proofs of program properties require this style of reasoning.

72 Imperative Languages

5.1.1 Programs Are Functions

The two sample simplification sequences in the previous section were operational-like: a pro-
gram and its input were computed to an answer. This makes the denotational definition
behave like an operational semantics, and it is easy to forget that functions and domains are
even involved. Nonetheless, it is possible to study the denotation of a pragthout sup-
plying sample input, a feature that is not available to operational semantics. This broader view
emphasizes that the denotation of a programfigation.

Consider again the example [&;if A=0thendiverge; Z:=3]. What is its meaning?
It's a function fromNatto Nat :

P[Z:=1;if A=0thendiverge; Z:=3.]
= An. lets= updatgA] n newstorein
lets = C[Z:=1;if A=0thendiverge, Z:=3]s
in acces§Z] s
= An.let s= updatgA] n newstorein
lets = (As.(As.C[Z:=3] (C[if A=0then diverge]s))s)(C[Z:=1]s)
in acces§Z] s
= An.let s= updatgA] n newstorein
lets = (As. (As. updat§Z] threes)
((As.(acces§A] s) equalszero— (As.|)s] s)s))
((As. updat§Z] ones)s)
in acces§Z] s

which can be restated as:

An.let s= updatglA] n newstorein
lets = (lets; = updatdZ] onesin
lets, = (acces§A] s,) equalszero—(As.|)sy || s1
in updatdZ] threes:)
in acces§Z] s

The simplifications taken so far have systematically replaced syntax constructs by their func-
tion denotations; all syntax pieces are removed (less the identifiers). The resulting expression
denotes the meaning of the program. (A comment: it is proper to be concerned why a phrase
such askg[0] s was simplified tozero even though the value of the store argumeris
unknown. The simplification works becausés an argument bound tas. Any undefined

stores are “trapped” bys. Thus, within the scope of thes, all occurrences o$ represent
defined values.)

The systematic mapping of syntax to function expressions resembles compiling. The
function expression certainly does resemble compiled code, with its occurrences of tests,
accesses, and updates. But it is still a function, mapping an input number to an output number.

As it stands, the expression does not appear very attractive, and the intuitive meaning of
the original program does not stand out. The simplifications shall proceed furthes; bet
(updatd/A] n newstord. We simplify to:

5.1.1 Programs Are Functions73

An.lets = (lets; = updatdZ] onesy in
let s, = (acces§A] s4) equalszero— (As.|)s; [51
in updatdZ] threes:)
inacces§Z] s

We uses,; for (updatgZ] onesp); the conditional in the value bound 5 is:

(acces§A] s;) equalszero—| [s,
=n equalszero— | || s;

The conditional can be simplified no further. We can make use of the following property;
“for e, €Store such thate, = |, lets= (e, = | [&) ine; equalse; — | [[ey/s]e;.” (The
proof is left as an exercise.) It allows us to state that:

lets, = (n equalszero— | || s;) in updateZ] threes,
= n equalszero— | [updatdZ] threes,

This reduces the program’s denotation to:

An.lets= (n equalszero— | [updatgZ] threes;) in acces§Z] s

The property used above can be applied a second time to show that this expression is just:
An.nequalszero— | [acces§Z] (updatdZ] threes;)

which is:
An.nequalszero— | [three

which is the intuitive meaning of the program!

This example points out the beauty in the denotational semantics method. It extracts the
essencef a program. What is startling about the example is that the primary semantic argu-
ment, the store, disappears completely, because it does not figure in the input-output relation
that the program describes. This program does indeed denote a functioNatdaNat .

Just as the replacement of syntax by function expressions resembles compilation, the
internal simplification resembles compile-time code optimization. When more realistic
languages are studied, such “optimizations” will be useful for understanding the nature of
semantic arguments.

5.2 AN INTERACTIVE FILE EDITOR

The second example language is an interactive file editor. We deffile @ be a list of
records, where the domain of records is taken as primitive. The file editor makes use of two
levels of store: the primary store is a component holding the file edited upon by the user, and
the secondary store is a system of text files indexed by their names. The domains are listed in
Figure 5.3.

The edited files are values from tipenfiledomain. An opened file;, ro, - - -, M|agt IS

74 Imperative Languages

Figure 5.3

IV. Text file Domainf& File= Record

V. File system
Domainse File-systens Id— File
Operations
accessldx File-system— File
access A(i,s). (i)
update Idx File x File-system— File-system
update= A(i,f,9).[i=Tf]s
VI. Open file
Domainp& Openfile= Record x Record
Operations
newfile Openfile
newfile= (nil, nil)

copyin File— Openfile
copyin= Af. (nil,f)

copyout Openfile-= File
copyout Ap. “appendsfst(p) to sndp)— defined later”

forwards Openfile= Openfile
forwards= A(front, bacRk. null back— (front, back
[((hd bach cons front (tl back))

backwards Openfile= Openfile
backwards- \(front, back. null front— (front, back
[(tl front, (hd frond cons back

insert. Recordk Openfile= Openfile
insert= \(r, (front, back). null back— (front, r cons back
[l ((hd back cons fron}, r cons(tl back)

delete Openfile= Openfile
delete= A(front, back. (front, (null back— back] tl back)

at-first-record Openfile=Tr
at-first-recorg= A(front, back. null front

at-last-record Openfile=Tr
at-last-record= A(front, back. null back—true
[(null (tl back— true || fals@

isempty Openfile=Tr
isempty= A(front, back. (null front) and (null back

5.2 An Interactive File Editor 75

represented by two lists of text records; the lists break the file open in the middle:

AT b I K] li Tigr " Nast

r; is the “current” record of the opened file. Of course, this is not the only representation of
an opened file, so it is important that all operations that depend on this representation be
grouped with the domain definition. There are a good number of thdewfilerepresents a

file with no records.Copyintakes a file from the file system and organizes it as:

M1 o * " Mast

Recordr; is the current record of the file. Operati@opyoutappends the two lists back
together. A definition of the operation appears in the next chapter.

The forwards operation makes the record following the current record the new current
record. Pictorially, for:

P PN K] i Tiz1 Nast

a forwards move produces:

I ricy " ra np liy1 " Nast

Backwardsperforms the reverse operatiomsertplaces a record behind the current record;
an insertion of record: produces:

r--"rn M riza 7 MNast

The newly inserted record becomes curreBelete removes the current record. The final
three operations test whether the first record in the file is current, the last record in the file is
current, or if the file is empty.

Figure 5.4 gives the semantics of the text editor.

Since all of the file manipulations are done by the operations foDenfiledomain, the
semantic equations are mainly concerned with trapping unreasonable user requests. They also
model the editor’s output log, which echoes the input commands and reports errors.

The C function produces a line of terminal output and a new open file from its open file
argument. For user commands such asVffile], the action is quite simple. Others, such as
[moveforward], can generate error messages, which are appended to the output log. For
example:

C[deletd(newfilg
= let ki, p) = isemptynewfil@ — ("error:file is empty, newfilg

76 Imperative Languages

Figure 5.4

Abstract syntax:

P& Program-session

S& Command-sequence
Ce Command

Re Record

| € Identifier

P:=editlcrS
S ;= Ccr S |quit
C ::=newfile | moveforward | moveback] insert R | delete

Semantic algebras:

I. Truth values
Domainte Tr
Operations

true, false: Tr
and: TrxTr—Tr

Il. Identifiers
Domaini € Id= Identifier

Ill. Text records
Domainr & Record

IV. - VI. defined in Figure 5.3
VII. Character Strings (defined in Example 3.3 of Chapter 3)
VIII. Output terminal log

Domainl € Log= String
Valuation functions:
P: Program-sessio# File-system— (Logx File-system

Pl edit | cr S] = As.let p= copyinfacces$[l], 9)) in

("edit I" cons fs(S[S] p), updaté 1], copyoutsndS[S]p)), 9))

S: Command-sequenee Openfile= (Logx Openfilg

S[C cr S] = Ap.let (I,p)= C[C] p in ((I cons fstS[S] pr)), shd(S[S] p))
S[quit] = Ap.("quit’ cons nil p)

5.2 An Interactive File Editor 77

Figure 5.4 (continued)

C: Command- Openfile= (Stringx Openfilg
Cl[newfile] = Ap.("newfile’, newfilg
C[moveforward] = Ap.let (k,pr) = isemptyp) — ("error: file is empty, p)
[(at-last-recordp) — ("error: at back alreadyp)
[("™, forwardgp)))
in ("moveforward concat k, p))
C[movebacH = Ap.let (ki,pr) = isemptyp) — ("error:file is empty, p)
[l (at-first-recordp) — ("error: atfrontalready, p))
[(", backwardgp))
in ("moveback concat k, pr)
Clinsert R] = Ap.("insertR', insert(R[R], p))
Cldeletd = Ap.let (k,pr) = isemptyp) — (“error:file is empty, p)
[(", deletep))
in ("deleté concat k, p1)

I (", deletdnewfilg)
in ("deleté concatks, pr))
= let (kr,p) = ("error: file is empty, newfile
in ("deleté concatks, pr)
= ("deleté concat"error:file is empty, newfilg
= ("delete error:file is empty newfilg

The S function collects the log messages into a liSfquit] builds the very end of this list.
The equation foS[C cr S] deserves a bit of study. It says to:

1. EvaluateC[C] p to obtain the next log entry plus the updated open fife.

2. Condlito the log list and pags onto §[S].

3. EvaluateS[S] p to obtain the meaning of the remainder of the program, which is the rest
of the log output plus the final version of the updated open file.

The two occurrences @S] pr may be a bit confusing. They dwt mean to “execute”
[S] twice— semantic definitions are functions, and the operational analogies are not always
exact. The expression has the same meaning as:

let (Ir, p)= C[C] p in let (n, pn)= S[S] pr in (' conslu, pu)

TheP function is similar in spirit toS. (One last note: there is a bit of cheating in writing
"edit!" as a token, because [I] is actually a piece of abstract syntax tree. A coercion function
should be used to convert abstract syntax forms to string forms. This is of little importance

78 Imperative Languages

and is omitted.)
A small example shows how the log successfully collects terminal output. Let [A] be
the name of a nonempty file in the file systegn

Pl edit A cr movebackcr deletecr quit] s
= ("edit A" consfst(S[movebackcr deletecr quit]pg),
updaté[A], copyou¢sndS[movebackcr deletecr quit]pg), S))
wherepg= copyin(access[A], S))
Already, the first line of terminal output is evident, and the remainder of the program can be
simplified. After a number of simplifications, we obtain:

("edit A" cons 'moveback error: at front alreatly
cons fstS[deletecr quit] pg)),

updat€[A], copyoufsndS[deletecr quit]pg))))

as the second command was incorre@[deletecr quit]py simplifies to a pair
("delete quit, p;), for p; = deletépy), and the final result is:

("edit A moveback error: at frontalready delete uit
updaté[A], copyoufp:), So))

5.2.1 Interactive Input and Partial Syntax

A user of a file editor may validly complain that the above definition still isn’'t realistic
enough, for interactive programs like text editors do not collect all their input into a single
program before parsing and processing it. Instead, the input is processed incrementally— one
line at a time. We might model incremental output by a series of abstract syntax trees. Con-
sider again the sample prograradjit A cr movebackcr deletecr quit]. When the first line

[edit A cr] is typed at the terminal, the file editor’s parser can build an abstract syntax tree
that looks like Diagram 5.1

(5.1) P (5.2) P
editAcr Q editAcr S
C

moveback cr Q

The parser knows that the first line of input is correct, but the remainder, the command
sequence part, is unknown. It use@J to stand in place of the command sequence that fol-
lows. The tree in Diagram 5.1 can be pushed through #efunction, giving

Pledit Acr Qs = ("edit A" cons fstS[R pg), updatd][A], copyoutsndS[2]po), S)))

5.2.1 Interactive Input and Partial Syntax79

The processing has started, but the entire log and final file system are unknown.
When the user types the next command, the better-defined tree in Diagram 5.2 is built,
and the meaning of the new tree is:

Pl edit A crmovebackcrQ] =
("edit A" cons"moveback error: at front alreatigonsfst(S[22] po),
updatg[A], copyoutsndS[] po)). <))

This denotation includes more information than the one for Diagram 5.1; it is “better
defined.” The next tree is Diagram 5.3:

(5.3) P
editAcr S
C S
movebackcr C

deletecr Q

The corresponding semantics can be worked out in a similar fashion. An implementation stra-
tegy is suggested by the sequence: an implementation of the valuation function executes under
the control of the editor’'s parser. Whenever the parser obtains a line of input, it inserts it into
a partial abstract syntax tree and calls the semantic processor, which continues its logging and
file manipulation from the point where it left off, using the new piece of abstract syntax.

This idea can be formalized in an interesting way. Each of the abstract syntax trees was
better defined than its predecessor. Let's use the syrabdb describe this relationship.
Thus, (5.1 (5.2)c (5.3)c - - - holds for the example. Similarly, we expect tiRft{5.3)] s
contains more answer information th&fj(5.2)]sy, which itself has more information than
P[(5.1)] s If we say that the undefined valdehas the least answer information possible, we

can defineS[Q]p=] for all argumentsp. The | value stands for undetermined semantic
information. Then we have that:

("editA" cons], |)
("edit A" cons 'movebackerror: at frontalreatigons |, |)
("edit A" cons 'moveback error: at front alreatigons ‘deleté cons |, |)

IMT 1 Ir

Each better-defined partial tree gives better-defined semantic information. We use these ideas
in the next chapter for dealing with recursively defined functions.

80 Imperative Languages

5.3 ADYNAMICALLY TYPED LANGUAGE
WITH INPUT AND OUTPUT

The third example language is an extension of the one in Section 5.1. Languages like SNO-
BOL allow variables to take on values from different data types during the course of evalua-
tion. This provides flexibility to the user but requires that type checking be performed at run-
time. The semantics of the language gives us insight into the type checking. Input and output
are also included in the example.

Figure 5.5 gives the new semantic algebras needed for the language. The value domains
that the language uses are the truth vallieand the natural numbehat. Since these values
can be assigned to identifiers, a domain:

Storable-value Tr+ Nat

is created. The + domain builder attaches a “type tag” to a value. Stuge domain
becomes:

Store= |d— Storable-value

The type tags are stored with the truth values and numbers for later reference. Since storable
values are used in arithmetic and logical expressions, type errors are possible, as in an attempt
to add a truth value to a number. Thus, the values that expressions denote come from the
domain:

Figure 5.5

V. Values that may be stored
Domainv& Storable-value Tr+ Nat

VI. Values that expressions may denote
Domainx & Expressible-value Storable-value Errvalue
whereErrvalue= Unit
Operations

check-expr (Store— Expressible-valugx
(Storable-value= Store— Expressible-value— (Store— Expressible-value
f; check-exprf= As.casesf s) of
isStorable-valugy)— (f, v9)
[isErrvalug))— inErrvalug)
end

VII. Input buffer
Domaini € Input= Expressible-valué
Operations

get-value Input— (Expressible-valug Input)
get-value= Ai. null i — (inErrvalug), i) [| (hd i, tli)

5.3 A Dynamically Typed Language with Input and Outp8i

Figure 5.5 (continued)

VIII. Output buffer
Domaino € Output= (Storable-value String)*
Operations
empty Output
empty= nil

put-value Storable-value Output— Output
put-value= A(v,0). inStorable-valué/) cons o

put-messageStringx Output— Output
put-message A(t,0). inString(t) cons o

IX. Store
Domains& Store=Id — Storable-value
Operations
newstore Store

accessld— Store— Storable-value
update Id— Storable-value- Store— Store

X. Program State
Domaina& State- Storex Inputx Output

Xl. Post program state
Domainze& Post-state- OK+ Err
whereOK= State
andErr = State
Operations
check-result (Store— Expressible-valuex (Storable-value> State— Post-statg)
— (State— Post-state)
fcheck-result g A(s,i,0). casesf(s) of
isStorable-valué)— (g v(s,i,0))
[isErrvalue))— inErr(s, i, put-messaggtype errof', 0)) end

check-cmd (State— Post-statg) x (State—> Post-statg)— (State—> Post-statg)
h; check-cmd §= Aa.let z= (h; &) in casex of
isOK(s,i,0)— h,(s,i,0)
[isErr(s,i,0)—zend

82 Imperative Languages

Expressible-value Storable-value Errvalue

where the domairrvalue= Unit is used to denote the result of a type error.

Of interest is the program state, which is a triple of the store and the input and output
buffers. ThePost-statedomain is used to signal when an evaluation is completed successfully
and when a type error occurs. The tag attached to the state is utilized blgedblecmapera-
tion. This operation is the sequencing operation for the language and is represented in infix
form. The expressiorQJC4] check-cmd[C,]) does the following:

1. It gives the current stateto C[C,], producing a post-state= C[[C]a.
2. If zis a proper state a', and then, if the state componddKisit producesC[C,Ja. If z
is erroneousC[C,] is ignored (it is “branched over”), and s the result.

A similar sequencing operatiooheck-resultsequences an expression with a command. For
example, in an assignment £E]J, [E]'s value must be determined before a store update can
occur. Since [[E]'s evaluation may cause a type error, the error must be detected before the
update is attempted. Operationheck-resulperforms this action. Finallycheck-expperforms

error trapping at the expression level.

Figure 5.6 shows the valuation functions for the language.

You are encouraged to write several programs in the language and derive their denota-
tions. Notice how the algebra operations abort normal evaluation when type errors occur. The
intuition behind the operations is that they represent low-level (even hardware-level) fault
detection and branching mechanisms. When a fault is detected, the usual machine action is a
single branch out of the program. The operations defined here can only “branch” out of a
subpart of the function expression, but since all type errors are propagated, these little
branches chain together to form a branch out of the entire program. The implementor of the
language would take note of this property and produce full jumps on error detection. Simi-
larly, the irOK and irErr tags would not be physically implemented, as any running program
has anOK state, and any error branch causes a change térthstate.

5.4 ALTERING THE PROPERTIES OF STORES

The uses of the store argument in this chapter maintain properties 1-3 noted in the introduction
to this chapter. These properties limit the use of stores. Of course, the properties are limiting
in the sense that they describe typical features of a store in a sequential programming
language. Itis instructive to relax each of restrictions 1, 3, and 2 in turn and see what charac-
ter of programming languages result.

5.4.1 Delayed Evaluation

Call-by-value (argument first) simplification is the safe method for rewriting operator, argu-
ment combinations when strict functions are used. This point is important, for it suggests that
an implementation of the strict function needs an evaluated argument to proceed. Similarly,

5.4.1 Delayed Evaluation 83

Figure 5.6

Abstract syntax:

P< Program

Ce Command

EE€ Expression

leld

NE Numeral
P:=C.
C:=C;;C, | I:=E |if Ethen C; elseC, |read | | write E |diverge
E:= E1+E2 I E1=E2 | -E I (E) | | | N |true

Semantic algebras:

I. Truth values (defined in Figure 5.1)

[I. Natural numbers (defined in Figure 5.1)

lll. Identifiers (defined in Figure 5.1)

IV. Character strings (defined in Example 3.5 of Chapter 3)
V. - Xl. (defined in Figure 5.5)

Valuation functions:

P: Program= Store— Input— Post-state
P[C.] = AsAi. C[C] (s, i, empty

C: Commane-> State— Post-state
C[C1;C5] = C[C4] check-cmd[C5]
Cll:=E] = E[E] check-resultAv.A(s,i,0).iINOK((updatdl] v s), i, 0))
C[if Ethen C, elseC,] = E[E] check-result
(AVvA(s,i,0). casew of
isTr(t)— (t—=C[C1] [CIC2])(s.i,0)
[isNat(n)— inErr(s,i, put-messaggbadtest, 0)) end)
Clread I] = A(s,i,0). let (x,i1) = get-valugi) in
casex of
isStorable-valug/) — inOK((updatdl] v9), i1, 0)
[isErrvalug)) — inErr(s, iv, put-messagébadinput, o)) end
Clwrite E] = E[E] check-resultAv.\(s,i,0).iNOK(s, i, put-valudv,0)))
Cldiverge] = Aa. |

84 Imperative Languages

Figure 5.6 (continued)

E: Expression= Store— Expressible-value
E[E1+E,] = E[E] check-expr
(Av.casew of
isTr(t) s.inErrvalug))
[isNat(n)— E[E,] check-expr
(Aw.As.casesn of
isTr(t)— inErrvalue()
[isNat(n)— inStorable-valuénNat(n plus n)) end)
end)
E[E.1=E;] = “similar to above equation”
E[-E] = E[E] check-expr
(AvAs.casey of
isTr(t)— inStorable-valuénTr(not 1))
[isNat(n)— inErrvalug() end)
E[(E)] = E[E]
E[l] = As.inStorable-valugaccesql] <)
E[N] = As.inStorable-valugnNat(N[N]))
E[true] = As.inStorable-valuénTr(true))

N:Numeral= Nat (omitted)

call-by-name (argument last) simplification is the safe method for handling arguments to non-
strict functions. Here is an example: consider the nonstrict fundddhx. zerg of domain
Nat— Nag. If f is given an argumerg whose meaning ig, thenf(e) is zera Argumente’s
simplification may require an infinite number of steps, for it represents a nonterminating
evaluation. Clearlye should not be simplified if given to a nonstrict

The Storebased operations use only proper arguments and a store can only hold values
that are proper. Let's consider how stores might operate with improper values. First, say that
expression evaluation can produce both proper and improper values. Altotieelomain to
be Store= Id— Nat . Now improper values may be stored. Next, adjustupdateoperation
to be: update Id— Nat — Store— Store update- Ai.AnAs.[i>n]s. An assignment state-
ment usesipdateto store the value of an expression [E] into the store. If [E] represents a
“loop forever” situation, thenE[E] s=|. But, sinceupdateis nonstrict in its second argu-
ment, (pdate[l] (E[E]) 9) is ddined. From the operational viewpoint, unevaluated or par-
tially evaluated expressions may be stored mitd he formE[E] s need not be evaluated until
it is used; the arrangement is callédlayed(or lazy) evaluation.Delayed evaluation provides
the advantage that the only expressions evaluated are the ones that are actually needed for

5.4.1 Delayed Evaluation 85

computing answers. But, on&dE]'s value is needed, it must be determined with respect to
the store that was active when [[E] was saved. To understand this point, consider this code:

begin
X:=0;
Y:=X+1;
X:.=4
resultis Y

where the block construct is defined as:

K: Block— Storg — Nat;
K[begin Cresultis E] = As.E[E] (C[C] s)

(Note: E now has functionalityE : Expressior-> Store — Nat, and it is strict in its store
argument.) At the final line of the example, the value of [Y] must be determined. The
semantics of the example, with some proper stgreés:

K[begin X:=0; Y:=X+1; X:=4 resultis Y] 5
= E[Y] (C[X:=0; Y:=X+1; X:=4] %)
= E[Y](C[Y:=X+1; X:=4] (C[X: =0]s9))
= E[Y] (C[Y:=X+1; X:=4] (updatd X] (E[0] 9) S))
At this point, E[O]s) need not be simplified; a new, proper stores

= (updatd[X] E[0] sy) is ddined regardless. Continuing through the other two commands,
we obtain:

ss = updatdX] (E[4]) s,
wheres,= updatd Y] (E[X +1]s) &
and the meaning of the block is:

E[Y] s; = acces§Y] s3

= E[X+1]s;

= E[X] s, plus one

= (acces§X] s;) plusong
= E[0] s plusone

= zero plus one one

The old version of the store, versiep must be retained to obtain the proper value for [X] in
[X+1]. If s3 was used instead, the answer would have been the incéinect

Delayed evaluation can be carried up to the command level by making,tke andK
functions nonstrict in their store arguments. The surprising result is that only those commands
that have an effect on the output of a program need be evaluated. Convert all strict abstractions
(As. g in the equations fo€ in Figure 5.2 to the nonstrict form3.¢. §. Redefineaccessand
updateto be:

86 Imperative Languages

access ldentifier— Store — Nat
access M.As. i)
update Identifier— Nat — Store — Store
update= Ai.AmAp. (M. irequalsi— m| (access p))

Then, regardless of the input steeghe program:

begin
X:=0;
diverge;
X:=2
resultis X+1

has the valuéhree This is becaus€[X: =0; diverge] s= |, and:

E[X+1](C[X:=2]])

= E[X +1] (updateX] (E[2] |)|), asC is nonstrict

= E[X+1]([[X] —E[2] | 1]), asupdateis nonstrict

= E[X]([[X] +E[2]]]]) plus one

= (acces§X] ([[X] +E[2] |]])) plus one

= E[2] | plus one

= two plus one asE is nonstrict

= three
The derivation suggests that only the last command in the block need be evaluated to obtain
the answer. Of course, this goes against the normal left-to-right, top-to-bottom sequentiality

of command evaluation, so the nonstrict handling of stores requires a new implementation
strategy.

5.4.2 Retaining Multiple Stores

Relaxing the strictness condition upon stores means that multiple values of stores must be
present in an evaluation. Must an implementation of any of the languages defined earlier in
this chapter use multiple stores? At first glance, the definition of addition:

E[E{+E,] = As.E[E] s plus E[E,] s

apparently does need two copies of the store to evaluate. Actually, the format is a bit deceiv-
ing. An implementation of this clause need only retain one copy of the stbeeause both
E[E.] andE[E>] usesin a “read only” mode. Sincesis not updated by either, the equation
should be interpreted as saying that the order of evaluation of the two operands to the addition
is unimportant. They may even be evaluated in parallel. The obvious implementation of the
store is a global variable that both operands may access.

This situation changes when side effects occur within expression evaluation. If we add

5.4.2 Retaining Multiple Stores 87

the block construct to the Expression syntax domain and define its semantics to be:
E[begin Cresultis E] = As.lets = C[C]sin E[E] s

then expressions are no longer “read only” objects. An implementation faithful to the seman-
tic equation must allow an expression to own a local copy of store. The local store and its
values disappear upon completion of expression evaluation. To see this, you should perform
the simplification ofC[X: =(begin Y:=Y+1resultisY)+Y]. The incrementation of [Y] in the
left operand is unknown to the right operand. Further, the store that gets the new value of [X]
is exactly the one that existed prior to the right-hand side’s evaluation.

The more conventional method of integrating expression-level updates into a language
forces any local update to remain in the global store and thus affect later evaluation. A more
conventional semantics for the block construct is:

K[begin Cresultis E] = As.lets = C[C] sin (E[E] s,)

The expressible value and the updated store form a pair that is the result of the block.

5.4.3 Noncommunicating Commands

The form of communication that a store facilitates is the building up of side effects that lead to
some final value. The purpose of a command is to advance a computation a bit further by
drawing upon the values left in the store by previous commands. When a command is no
longer allowed to draw upon the values, the communication breaks down, and the language no
longer has a sequential flavor.

Let's consider an example that makes use of multiple stores. Assume there exists some
domainD with an operatiorcombine Dx D— D. If combinebuilds a “higher-quality” D-
value from its twoD-valued arguments, a useful store-based, noncommunicating semantics
might read:

Domainse& Store= Id—D
C: Commane> Storg — Storg
CIC4;Col = As.join(C[C1]9) (CIC2]9)
wherejoin : Storeg — Store — Storg
join = As;.As;. (M. s1(i) combine (i)

These clauses suggest parallel but noninterfering execution of commands. Computing is
divided between [¢] and [C,] and the partial results are joined usiocgmbine This is a
nontraditional use of parallelism on stores; the traditional form of parallelism allows interfer-
ence and uses the single-store model. Nonetheless, the above example is interesting because it
suggests that noncommunicating commands can work together to build answers rather than
deleting each other’s updates.

88 Imperative Languages

SUGGESTED READINGS

Semantics of the store and assignmentBarron 1977; Donohue 1977; Friedman et al. 1984;
Landin 1965; Strachey 1966, 1968

Interactive systems: Bjérner and Jones 1982; Cleaveland 1980

Dynamic typing: Tennent 1973

Delayed evaluation: Augustsson 1984; Friedman & Wise 1976; Henderson 1980; Henderson
& Morris 1976

EXERCISES

1. Determine the denotations of the following programblat when they are used with the
input data valuene

a. P[z:=A]
b. P[(if A=Othendiverge else¥:=A+1);Z:=Y.]
c. P[diverge;Z:=0.]

2. Determine the denotations of the programs in the previous exercise without any input;
that is, give their meanings in the domaiat—Nat .

3. Give an example of a program whose semantics with respect to Figure 5.2, is the denota-
tion (An.ong. Does an algorithmic method exist for listing all the programs with exactly
this denotation?

4. Show that the following properties hold with respect to the semantic definition of Figure
5.2:

a. P[Z:=0;if A=Othenz:=A.] = P[Z:=0.]

b. Forany @ CommandC[diverge; C] = C[diverge]

c. Forall i, E;€ ExpressionE[E{+E,] = E[E»+E,]

d. For any Bz Boolean-expr, ¢, C,€ Command,
C[if Bthen C,; elseC,] = C[if-BthenC, elseC,].

e. There exist some @B Boolean-expr and £ C,& Command such that
C[if BthenCy;if =BthenC,] = C[if BthenC; elseC,]

(Hint: many of the proofs will rely on the extensionality of functions.)

5. a. Using structural induction, prove the following: for eversg Expression in the
language of Figure 5.2, for anyel Identifier, E'© Expression, ands& Store
E[[EI]IE] s= E[E](update[l]] E[E']sS).

b. Use the result of part a to prove: for everse Boolean-expr in the language of Fig-
ure 5.2, for every & Identifier, & Expression, ands& Store B[[EV/I]B] s =
B[B](update[l] E[E]s9).

10.

Exercises 89

Say that theStore algebra in Figure 5.1 is redefined so that the domain is
s€ Store= (Id x Naf)*.

a. Define the operatiomewstore’, accessndupdate'to operate upon the new domain.
(For this exercise, you are allowed to use a recursive definitioradoess’ The
definition must satisfy the properties stated in the solution to Exercise 14, part b, of
Chapter 3.) Must the semantic equations in Figure 5.2 be adjusted to work with the
new algebra?

b. Prove that the definitions created in part a satisfy the properties: fef k&l nE Nat,
andse Store:

accessi hewstore= zero
accessi (updateins)=n
accessi (updatejns) = (accessi s), forj=i

How do these proofs relate the nestore algebra to the original? Try to define a
notion of “equivalence of definitions” for the class of &torealgebras.

Augment the Command syntax domain in Figure 5.2 wisivap command:
C:u=---|swaplql,

The action ofswapis to interchange the values of its two identifier variables. Define the
semantic equation faswap and prove that the following property holds for ans [
andse Store C[[swapJ, Js= s. (Hint: appeal to the extensionality of store functions.)

a. Consider the addition of a Pascal-lt@sescommand to the language of Figure 5.2.
The syntax goes as follows:

Ce Command
Ge Guard
EE€ Expression
C:=---|caseeofGend
G:=N:C;G|N:C
Define the semantic equation f6f caseE of G end] and the equations for the valua-
tion functionG : Guard— (Natx Storg — Store. List the design decisions that must
be made.
b. Repeat part a with the rule G ::= N:C | &>

Say that the commanddstE on C] is proposed as an extension to the langauge of Fig-
ure 5.2. The semantics is:

C[testEonC] = As.lets = C[C] sin E[E]s equalszero—s [s
What problems do you see with implementing this construct on a conventional machine?
Someone proposes a version of “parallel assignment” with semantics:

Cll1, 12:=Eq, ;] = As.lets = (updatefl] E[E4]sS)

90

11.

12.

13.

14,

15.

16.

Imperative Languages

in update]l,] E[E2]s &

Show, via a counterexample, that the semantics does not define a true parallel assign-
ment. Propose an improvement. What is the denotation of E1,Jt] in your seman-
tics?

In a LUCID-like language, a family of parallel assignments are performed in a construct
known as @lock. The syntax of a block B is:

B ::
A

beginA end
Inew:=E | A1§A2

The block is further restricted so that all identifiers on the left hand sides of assignments
in a block must be distinct. Define the semantics of the block construct.

Add thediverge construction to the syntax of Expression in Figure 5.2 and say that
E[diverge] = As.|. How does this addition impact:

a. The functionalities and semantic equationsGpE, andB?

b. The definition and use of the operatiansate, plus, equalandnot? What is your
opinion about allowing the possibility of nontermination in expression evaluation?
What general purpose imperative languages do you know of that guarantee termina-
tion of expression evaluation?

The document defining the semantics of Pascal claims that the order of evaluation of
operands in an (arithmetic) expression is left unspecified; that is, a machine may evaluate
the operands in whatever order it pleases. Is this concept expressed in the semantics of
expressions in Figure 5.2? However, recall that Pascal expressions may contain side
effects. Let’'s study this situation by adding the constructrf€]. Its evaluation first
evaluates [C] and then evaluates [[E] using the store that was updated by [C]. The store
(with the updates) is passed on for later use. Défife in E]. How must the functional-

ity of E change to accommodate the new construct? Rewrite all the other semantic equa-
tions for E as needed. What order of evaluation of operands does your semantics
describe? Is it possible to specify a truly nondeterminate order of evaluation?

For some defined stosg, give the denotations of each of the following file editor pro-
grams, using the semantics in Figure 5.4:

a. P[editA cr newfilecr insertR, cr insert R; quit] sy. Call the resultlpg;, s;).

b. P[editA cr moveforward cr delete cr insertR, quit]s;, wheres; is from part a.
Call the new resultlfg,, s,).

c. P[editA crinsertR; cr quit]s,, wheres, is from part b.

Redo part a of the previous question in the style described in Section 5.2.1, showing the
partial syntax trees and the partial denotations produced at each step.

Extend the file editor of Figure 5.4 to be a text editor: define the internal structure of the

17.

18.

19.

20.

21.

22.

23.

24.

Exercises 91

Recordsemantic domain in Figure 5.3 and devise operations for manipulating the words
in a record. Augment the syntax of the language so that a user may do manipulations on
the words within individual records.

Design a programming language for performing character string manipulation. The
language should support fundamental operations for pattern matching and string manipu-
lation and possess assignment and control structure constructs for imperative program-
ming. Define the semantic algebras first and then define the abstract syntax and valuation
functions.

Design a semantics for the grocery store data base language that you defined in Exercise
6 of Chapter 1. What problems arise because the abstract syntax was defined before the
semantic algebras? What changes would you make to the language’s syntax after this

exercise?

In the example in Section 5.3, tH&torable-valuedomain is a subdomain of the
Expressible-valueglomain; that is, every storable value is expressible. What problems
arise when this isn’t the case? What problems/situations arise when an expressible value
isn't storable? Give examples.

In the language of Figure 5.6, whatHpwrite 2; diverge.]? Is this a satisfactory denota-
tion for the program? If not, suggest some revisions to the semantics.

Alter the semantics of the language of Figure 5.6 so that an expressible value error causes
an error message to be placed into the output buffer immediately (rather than letting the
command in which the expressible value is embedded report the message later).

Extend theStorable-valuealgebra of Figure 5.5 so that arithmetic can be performed on
the (numeric portion of) storable values. In particular, define operations:

plus : Storable-value Storable-value= Expressible-value
not : Storable-value= Expressible-value
equals: Storable-value Storable-value-= Expressible-value

so that the equations in tiievaluation function can be written more simply, e.g.,
E[E1+E,] = E[E] scheck-expi(Av,. E[E,] s check-expi(Av,. v; plus v,))
Rewrite the other equations EBfin this fashion. How would the new versions of the stor-

able value operations be implemented on a computer?

Alter the semantics of the language of Figure 5.6 so that a variable retains the type of the
first identifier that is assigned to it.

a. Alter theStorealgebra in Figure 5.5 so that:

Store= Index— Storable-valu&

92

25.

26.

27.

28.

29.

Imperative Languages

wherelndex= Id+ Input+ Output
Input= Unit
Output= Unit

that is, the input and output buffers are kept in the store and indexed by tags. Define
the appropriate operations. Do the semantic equations require alterations?

b. Take advantage of the new definition of storage by mapping a variablkistoay of
all its updates that have occurred since the program has been running.

Remove the commanadad|] from the language of Figure 5.6 and place the construct
[read] into the syntax of expressions.

a. Give the semantic equation figf read].
b. Prove thaC[readl] = C[I: =read].
c. What are the pragmatic advantages and disadvantages of the new construct?

Suppose that thetoredomain is defined to b8tore= Id— (Store— Nat) and the seman-
tic equation for assignment is:

C[l: =E] = As. updat€]l] (E[E]) s

a. Define the semantic equations for thgaluation function.
b. How does this view of expression evaluation differ from that given in Figures 5.1 and
5.2? How is the new version like a macroprocessor? How is it different?

If you are familiar with data flow and demand-driven languages, comment on the resem-
blance of the nonstrict version of tli&valuation function in Section 5.4.1 to these forms
of computation.

Say that a vendor has asked you to design a simple, general purpose, imperative program-
ming language. The language will include conceptexgressiorand command Com-

mands update the store; expressions do not. ddmrol structuresfor commands
include sequencing and conditional choice.

a. What questions should you ask the vendor about the language’s design? Which
design decisions should you make without consulting the vendor first?

b. Say that you decide to use denotational semantics to define the semantics of the
language. How does its use direct and restrict your view of:

i. What the store should be?

ii. How stores are accessed and updated?

iii. What the order of evaluation of command and expression subparts should be?
iv. How the control structures order command evaluation?

Programming language design has traditionally worked from a “bottom up” perspective;

that is, given a physical computer, a machine language is defined for giving instructions
to the computer. Then, a second language is designed that is “higher level” (more con-
cise or easier for humans to use) than the first, and a translator program is written to

Exercises 93

translate from the second language to the first.

Why does this approach limit our view as to what a programming language should
be? How might we break out of this approach by using denotational semantics to design
new languages? What biases do we acquire when we use denotational semantics?

Chapter 6

Ecg)nrgain Theory Il: Recursively Defined Func-

The examples in Chapter 5 provide strong evidence that denotational semantics is an expres-
sive and convenient tool for language definition. Yet a few gaps remain to be filled. In Figure
5.3, thecopyoutfunction, which concatenates two lists, is not given. We can speoibyout
using an iterative or recursive specification, but at this point neither is allowed in the function
notation.

A similar situation arises with the semantics of a Pascalwikée-loop:

B: Boolean-expression
C: Command
C:=---|whileBdoC| -

Here is a recursive definition of its semantics: RirBoolean-expressior> Store— Tr and
C: Command- Store — Store:

C[while B do C] = As.B[B] s— C[while B do CJ (C[C] 9)]| s

Unfortunately, the clause violates a rule of Chapter 3: the meaning of a syntax phrase may be
defined only in terms of the meanings of its proper subparts. We avoid this problem by stating:

Cl[while Bdo C]=w
wherew: Storg — Storg is W= As.B[B] s=w(C[C] s) [s

But the recursion remains, for the new version exchanges the recursion in the syntax for recur-
sion in the function notation.

We have steadfastly avoided recursion in function definitions because Section 3.3 showed
that a recursive definition might not define a unique function. Recall the recursive
specification of functiorj: Nat— Nat from Section 3.3:

g=An.n equals zere> ond] q(n plus ong

Whateverg stands for, it must map zeroargument toone. Its behavior for other arguments,
however, is not so clear. All the specification requires is that the answer for a nonzero argu-
mentn be the same as that forplus onejts successor. A large nhumber of functions satisfy
this criterion. One choice is the function that maesoto oneand all other arguments tp.

We write this function’s graph as gérqone} (rather than {gerqone, (one |),

(two, |), - - - }, treating the (, |) pairs as “ghost members”). This choice is a natural one for
programming, for it corresponds to what happens when the definition is run as a routine on a
machine. But it is not the only choice. The graphzéfq oné, (one four), (two, four),

(three four), - - - } denotes a function that also has the behavior specifiegHsyzeromaps to

94

95

oneand all other arguments map to the same answer as their successors. In general, any func-
tion whose graph is of the form gérgone), (one k), (two, k), - - - }, for some kENat,

satisfies the specification. For a programmer, the last graph is an unnatural choice for the
meaning ofg, but a mathematician might like a function with the largest possible graph
instead, the claim being that a “fuller” function gives more insight. In any case, a problem
exists: a recursive specification may not define a unique function, so which one should be
selected aghe meaning of the specification? Since programming languages are implemented
on machines, we wish to choose the function that suits operational intuitions. Fortunately, a
well-developed theory known dsast fixed point semantiestablishes the meaning of recur-

sive specifications. The theory:

1. Guarantees that the specification has at least one function satisfying it.

2. Provides a means for choosing a “best” function out of the set of all functions satisfying
the specification.

3. Ensures that the function selected has a graph corresponding to the conventional opera-
tional treatment of recursion: the function maps an arguradnta defined answdy iff
the operational evaluation of the specification with the representation of argarpeot
duces the representationtoin a finite number of recursive invocations.

Two simple examples of recursive specifications will introduce all the important concepts
in the theory. The theory itself is formalized in Sections 6.2 through 6.5. If you are willing to
accept that recursive specifications do indeed denote unique functions, you may wish to read
only Sections 6.1 and 6.6.

6.1 SOME RECURSIVELY DEFINED FUNCTIONS

Perhaps the best known example of a recursive function specification is the factorial function.
Since it is so well understood, it makes an excellent testing ground for the theory. Its
specification ifac: Nat— Nat such that:

fac(n) = n equals zere> ong] n times(fac(n minus ony

This specification differs front/s because only one function satisfies the specification: the
factorial function, whose graph is férg one, (one oné,
(two, two), (three six), - - -, (i,i!), - - - }. The graph will be the key to understanding the
meaning of the specification. Note that it is an infinite set. It is often difficult for people to
understand infinite objects; we tend to learn about them by considering their finite subparts
and building up, step by step, toward the object. We can study the factorial function in this
way by evaluating sample arguments wftit. Since the function underlying the recursive
specification is not formally defined at the moment, an arrew) (ill be used when a recur-
sive unfolding is made.

Here is an evaluation usirfgc:

fac(thre@ = three equals zere> ong] three timedac(three minus one
= three timedac(three minus one

96 Domain Theory Il: Recursively Defined Functions

= three timegac(two)
= three timegtwo equals zere= ond] two timesfac(two minus ong
= three timegqtwo timesfac(ong)
= three timegtwo times(one equals zere> one

[one timedac(one minus ong)
= three timegtwo times(one timedac(zerg))
= three timegtwo times(one timegzero equals zere> one

[zero timedac(zero minus ong))

= three timeqtwo times(one timeong)
= SiX

The recursive unfoldings and simplifications correspond to the conventional operational treat-

ment of a recursive routine. Four unfoldings of the recursive definition were needed to produce

the answer. To make tHac specification produce an answefrom an argumend, at most a

finite number of unfoldings are needed. If Efinite number of unfoldings are needed to pro-

duce an answer, the evaluation will never be complete. These ideas apply to the specification

g as well. Only argumerteroever produces an answer in a finite number of unfoldings of
Rather than randomly supplying argumentddo, we use a more systematic method to

understand its workings. Our approach is to place a limit on the number of unfoldirigs of

and see which arguments can produce answers. Here is a sumnfagsdiehavior broken

down in this fashion:

1. Zero unfoldings no argumenn& Nat can produce an answer, for no forfiac(n) can
simplify to an answer without the initial unfolding. The corresponding function graph is
{}.

2. One unfolding this allowsfac to be replaced by its body only once. Thdag(zerg
= zero equals zere-ond] - - - =one but all other nonzero arguments require further
unfoldings to simplify to answers. The graph produced &&f¢ oné }.

3. Two unfoldings since only one unfolding is needed for mapping argunzembto one,
(zerq ong appears in the graph. The extra unfolding allows arguroasto evaluate to
one,for faclong = one equals zere+ one|] one timeqfaclone minus on@ = one times
fac(zerg = one timeqzero equals zere=ond] - - -) = one timeone=one All other
arguments require further unfoldings and do not produce answers at this stage. The graph
is {(zerqg ong, (one oné }.

4. (i+1) unfoldings, for £0: all arguments with values dfor less will simplify to answers
i!, giving the graph { gerg oné, (ong ong, (two, two), (three six), - - -, (i, i!)}.

The graph produced at each stage defines a function. In the above exampée, let
denote the function defined at staigeFor examplegraph(facs) = {(zerg ong, (one ons),
(two, two) }. Some interesting properties appear: forialD, graph(fag)C graph(fag ,1). This
says that the partial functions produced at each stage are consistent with one another in their
answer production. This isn’t a startling fact, but it will prove to be important later. Further,
for all i= 0, graph(fag)C graph(factorial), which says that eactag exhibits behavior con-
sistent with the ultimate solution to the specification, the factorial function. This implies:

(U graph(fag) C graph(factorial)
i=0

6.1 Some Recursively Defined Function87

Conversely, if some pai(b) is in graph(factorial), then there must be some finite 0 such

that @b) is in graph(fac) also, as answers are produced in a finite number of unfoldings.
(This property holds fofactorial and its specification, but it may not hold in general. In Sec-
tion 6.3, we show how to make it hold.) Thus:

graph(factorial) C (_J graph(fac)
i=0
and we have just shown:

graph(factorial) = |_J graph(fac)
i=0
The equality suits our operational intuitions and states that the factorial function can be totally
understood in terms of the finite subfunctiorfa§ | i=0}.

This example demonstrates the fundamental principle of least fixed point semantics: the
meaning of any recursively defined function is exactly the union of the meanings of its finite
subfunctions. It is easy to produce a nonrecursive representation of each subfunction. Define
eachfag: Nat— Nat, fori=0, as:

faco=An. |
fag .1 = An.n equals zere> ong] n timesfac(n minus ong for alli=0

The graph of eackag is the one produced at stagef the fac unfolding. The importance is
twofold: first, eachfag is a nonrecursive definition, which suggests that a recursive
specification can be understood in terms of a family of nonrecursive ones; and, second, a for-
mat common to all théac’s can be extracted. Let:

F=Af.An. n equals zere> ong] n times(f(n minus ony

Eachfag,; = F(fag). The nonrecursivé: (Nat— Nat) — (Nat— Nat) is called afunctional,
because it takes a function as an argument and produces one as a result. Thus:

graph(factorial) = |_J graph(F'(2))
i=0

where F' = FoFo ---oF, i times, andQ= (An.]). Another important fact is that
graph(F(factorial)) = graph(factorial), which impliesF(factorial) = factorial, by the exten-
sionality principle. The factorial function isfaxed pointof F, as the answef produces from
argumenfactorial is exactlyfactorial again.

We can apply the ideas just discussed todtspecification. We use the associated func-
tional Q: (Nat— Nat) — (Nat— Nat), which is:

Q=Ag.An. n equals zere>ong] g(n plus ong
Then:

Q@)= (n.])

graph(Q%(@)) = {}

Q'(®) = An. nequals zere> ong]] (An. 1) (nplusong

= An.nequals zere> ong] |

graph(Q'(2)) = { (zera ong)}

98 Domain Theory Il: Recursively Defined Functions

Q*(9) = QD))

= \n. nequals zere> ong] ((nplus ong equals zere>ond] |)
graph(Q*(9)) ={ (zera ong }

At this point a convergence has occurred: foriall, graph(Q' (@)) = {(zerq ond}. It fol-
lows that:

UJ graph(Q (2)) = { (zera ong }
i=0

Let glimit denote the function that has this graph. It is easy to show@alimit) = glimit,
that is,glimit is a fixed point ofQ.
Unlike the specificatioriac, g has many possible solutions. Recall that each one must
have a graph of the form gerg ong), (one k), - - -, (i, K), - - - } for someke Nat. Let gk be
one of these solutions. We can show that:

1. gkis afixed point 0fQ, that is,Q(gK) = gk.
2. graph(glimit) C graph(gk).

Fact 1 says that the act of satisfying a specification is formalized by the fixed point property—
only fixed points of the associated functional are possible meanings of the specification. Fact
2 states that the solution obtained using the stages of unfolding methodsm#iestof all
the possible solutions. For this reason, we call itldast fixed poinbf the functional.

Now the method for providing a meaning for a recursive specification is complete. Let a
recursive specificatiofi= F(f) denote the least fixed point of functiorfal that is, the function

associated with{_J graph(F (@)). The three desired properties follow: a solution to the
i=0
specification exists; the criterion of leastness is used to select from the possible solutions; and,
since the method for constructing the function exactly follows the usual operational treatment
of recursive definitions, the solution corresponds to the one determined computationally.
The following sections formalize the method.

6.2 PARTIAL ORDERINGS

The theory is formalized smoothly if the subset relation used with the function graphs is gen-
eralized to gpartial ordering. Then elements of semantic domains can be directly involved in
the set theoretical reasoning. For a domajra binary relatiomrC DxD (orr: DxD—B) is
represented by the infix symbag}y, or justc if the domain of usage is clear. FarbeD, we
readac b as saying ‘ais less defined thab.”

6.1 Ddinition:

Arelationc: Dx D— B is a partial ordering upon D iffc is:

1. reflexive: for all &=D, ac a;
2. antisymmetric: for all ab€e D, ac b and b= a imply a= b.
3. transitive: forallg b, ceD, ac b and b= ¢ imply ac c.

6.2 Partial Orderings 99

A partial orderingt on a domairD treats the members & as if they were sets. In fact,
given a sek, we can usé& as a partial ordering upon the members cEP@ minimum par-
tial order structure on a domaihis thediscretepartial ordering, which makes eadke D less
defined than itself and relates no other elements; that is, fdyr etE D, dC eiff d=e.

A partially ordered set of elements can be represented by an acyclic graph, xahgre
when there is an arc from elemento elementy andx is beneatlty on the page. For example,
given IP({one two, three}), partially ordered by subset inclusion, we draw the graph:

PO = { ong two, three}
{ oneg two} { ongthree} { two, three}
{ one} { two} { three}
{}

to represent the partial ordering. Taking into account reflexivity, antisymmetry, and transi-
tivity, the graph completely describes the partial ordering. For example,
{two} £ { one two}, { one} £{one}, and{} E { two, three}.

For the set &, b, ¢, d}, the graph:

Pl= a c
b

d

also defines a partial ordering, as does:
P2= a b ¢ d

(the discrete ordering). There is a special symbol to denote the element in a partially ordered
domain that corresponds to the empty set.

6.2 Ddinition:

For partial ordering © on D, if there exists an elemen&® such that for all =D,
ct d, then c is the least defined element in D and is denoted by the syrfiieald “bot-
tom”).

Partial ordering?0 and P1 have bottom elements, b2 does not. We also introduce an
operation analogous to set union.

6.3 Ddinition:

100 Domain Theory II: Recursively Defined Functions

For a partial ordering= on D, for all a b€ D, the expression|db denotes the element
in D (if it exists) such that:

1. acdlbandbzallb.
2. foralldeD,acdandb=dimplyalbcd.

The elemeng] |b is thejoin of a andb. The join operation produces the smallest element that
is larger than both of its arguments. A partial ordering might not have joins for all of its pairs.
For example, partial orderin@®2 has joins defined only for pairs, {)— i i = i for anyi € P2

Here are some other examples: for partial ordeftig d |d= c andal |d=a, butal |c is not
defined. Partial orderinB0 has joins defined for all pairs. Conversely, for:

P3= a
b c

d e

dl Jeis notdefined. Even though all df, c,anda are better defined thahande, no one of the
three is minimal; since both#c andc Zb, neither of the two can be chosen as least.

An intersection-like operation calledeetis definable in a similar fashion. We wriig]y
to denote the best-defined element that is smaller thanxbatidy. POhas meets defined for
all pairs of elements. I3, Hc is not defined for reasons similar to those given for the
undefinedness af_|e; d[|e has no value either.

6.4 Ddinition:

A set D, partially ordered by , is a lattice iff for all 3 b€ D, both d |b and 4b exist.
POis a lattice, buP1-P3are not. For any s, IP(E) is a lattice under the usual subset order-
ing: join is set union and meet is set intersection.

The concepts of join and meet are usefully generalized to operate over a (possibly
infinite) set of arguments rather than just two.

6.5 Ddinition:

For a set D partially ordered bye and a subset X of O, | X denotes the element of D (if
it exists) such that:

1. forallxe X, xc [|X.
2. forallde D, if for all x€ X, x& d, then| | XE d.

The element | X is called theeast upper boundub) of X. The definition forgreatest lower
bound(glb) of X is similar and is writter] | X.

6.6 Ddinition:
A set D partially ordered byt is a complete lattice iff for all subsets X of D, bdthX

6.2 Partial Orderings 101

and [] X exist.

The standard example of a complete lattice is the powerset lattiEe ROy lattice with a

finite number of elements must be a complete lattice. Not all lattices are complete, however;
consider the seff = { x| x is afinite subset oilN } partially ordered by subset inclusior- is
clearly a lattice, as joins and meets of finite sets yield finite setd; mhot complete, for the

lub of the setS={ { zero}, { zerg one}, { zerg one two}, - --}is exactly N, which is not

in F.

A complete latticeD must always have a bottom element, foiD= |. Dually, | |D
denotes an element represented Ifyop).

The definitions of lattice and complete lattice are standard ones and are included for com-
pleteness’ sake. The theory for least fixed point semantics doesn’t require domains to be lat-
tices. The only property needed from partially ordered sets is that lubs exist for those sets
representing the subfunction families. This motivates two important definitions.

6.7 Ddinition:

For a partially ordered set D, a subset X of D is a chain iff X is nonempty and for all
a, beX,ac b or bt a.

A chainrepresents a family of elements that contain information consistent with one another.
(Recall the family of functions developed in the stages of unfoldingaofin Section 6.1.)
Chains can be finite or infinite; in partial orded, { d, b, a} forms a chain, as doesd}, but

{a, c} does not. The lub of a finite chain is always the largest element in the chain. This
does not hold for infinite chains: consider again theSdefined above, which is a chain in
both latticeF and complete lattice IP(IN).

Since chains abstract the consistent subfunction families, it is important to ensure that
such chains always have lubs. A lattice may not have lubs for infinite chains, so ordinary lat-
tices are not suitable. On the other hand, requiring a domain to be a complete lattice is too
strong. The compromise settled upon is calledplete partial ordering.

6.8 Ddinition:

1. A partially ordered set D is a complete partial ordering (cpo) iff every chain in D
has a least upper bound in D.

2. A partially ordered set D is a pointed complete partial ordering (pointed cpo) iff it is
a complete partial ordering and it has a least element.

The partial ordering®0 throughP3 are cpos, but onlf?0 andP1 are pointed cpos. The exam-
ples suggest that the requirements for being a cpo are quite weak. The solutions for recursive
function specifications are found as elements within pointed cpos.

102 Domain Theory Il: Recursively Defined Functions

6.3 CONTINUOUS FUNCTIONS

When the partial order relation was introducedg was read as “is less defined than.” For
functions, we judged definedness in terms of their graphs: a funti®tess defined than a
function g if f's graph is a subset af's. The totally undefined functiori.Q. |) contains no
answer-producing information at all, and it is appropriate that its graph is the empty set and
that un. |) =f for all functionsf. The graph representation of a function provides a way to
“look inside” the function and judge its information content. In general, any elerdeftan
arbitrary domairD might be thought of as a set-like object, containing “atoms” of informa-
tion. Then,cy can still be thought of as a subset relation, and the least upper bound operator
can still be thought of as set union.

Now consider what a function does to its arguments. A fundtidn— B is a transforma-
tion agent, converting an elemext A to somef(x) € B. How should this be accomplished?
If x is thought of as a set of “atoms,” theintransformsx by mappingx's atoms into theB
domain and recombining them there XIfE, y, an application of should produce the analo-
gous situation inB. A function f: A—B is monotoniciff for all x,y& A, XZSay implies
f(x) Sgf(y). The condition is justified by practical issues in computing: a procedure for
transforming a data structure such as an array performs the transformation by altering the
array’s subparts one at a time, combining them to form a new value. The procedure denotes a
monotonic function. Nonmonotonic functions tend to be nasty entities, often impossible to
implemement. A famous example of a nonmonotonic functigragram-halts Nat — B,

true if x=
false if x=

program-halt$x) = [
program-haltsis nonmonotonic. Consider a proper numheiit is always the case thatc n,
but it is normallynot the case thaprogram-halt$|) = program-haltgn), that is,falsec true,
asfalseis not less defined thanue— their information contents are disjoint.

For the moment, pretend that an implementationpadgram-haltsexists and call its
coded procedure PGM-HALTS. PGM-HALTS could see if a program P terminates with its
input A, for P represents a function in domaitat— Nat, A represents a natural number, so
PGM-HALTS(P(A)) returns TRUE or FALSE based upon whether or not P halts with A. Itis
easy to see how PGM-HALTS might return a TRUE value (it runs P(A) and once P(A) stops
and outputs a numeral, it returns TRUE), but how can PGM-HALTS ever tell that P(A) will
run forever (that is, be undefined) so that it can return FALSE? There is no obvious solution;
in fact, there is no solution at all— this is the famous “halting problem” of computability
theory:program-haltscannot be implemented on any computing machine.

We require that all the functions used in denotational semantics be monotonic. The
requirement guarantees that any family of subfunction&(]), F(F(])), -, F'(]), - -
generated by a monotonic functiorials a chain.

A condition stronger than monotonicity is needed to develop least fixed point semantics.
Just as the binary join operation was generalized to the lub operation, the monotonicity condi-
tion is generalized teontinuity.

6.9 Ddinition:

6.4 Least Fixed Points 103

For cpos A and B, a monotonic functionX— B is continuous iff for any chain XA,

f(LIX) = LI{) | xEX3.

A continuous function preserves limits of chains. Thatf($,| X) contains exactly the same
information as that obtained by mapping all theto f(x)'s and joining the results. The reason
that we use continuous functions is that we require the progeayh(| |{ F'(Z) |i=0}) C

U graph(F'(@)) | i =0}, which was noted in Section 6.1 in tti@c example.
i=0

Continuous functions suggest a strategy for effectively processing objects of infinite size
(information content). For some infinite objectit may not be possible to place a representa-
tion of Y in the computer store, 9¢Y) simply isn't computable in the conventional way. But
if Y is the least upper bound of a chaiw;{| i€EN} where eachy; has finite size, anflis a
continuous function, then eaghcan be successively stored dmapplied to each. The needed
valuef(Y) is built up piece by piece d¢yo) || f(y1) || f(y2) L - - -. Since {f(y;) | iEN} con-
stitutes a chain anflis continuousf(Y) = | |{ f(y;) | iEN}. (This was the same process used
for determining the graph of the factorial function.) Of course, to completely compute the
answer will take an infinite amount of time, but it is reassuring that every piece of the answer
f(Y) will appear within a finite amount of time.

Continuity is such an important principle that virtually all of the classical areas of
mathematics utilize it in some form.

6.4 LEAST FIXED POINTS

A functionalis a continuous functioft D — D; usuallyD is a domain of formA— B, but it
doesn't have to be.

6.10 Ddinition:

For a functional E D—D and an element & D, d is a fixed point of F iff)= d.
Further, d is the least fixed point of F if, for alke D, F(€) = e implies ¢t e.

6.11 Theorem:

If the domain D is a pointed cpo, then the least fixed point of a continuous functional
F:D—D exists and is defined to be xf=[|{F(])]|i=0}, where
F'=FoFo -+ oF,itimes.

Proof: First, fix F is a fixed point of~, as

F(fixF)= F(LI{ F'(D) li=0)
= [{ F(F'(]) =0} by continuity of F
= LI{FD =1}
= LI{F(D li=0} asF°()= L and| =F(])

104 Domain Theory II: Recursively Defined Functions

= fixF

To showfixF is least, lele€ D be a fixed point of. Now, | C e, and by the monotoni-
city of F, F/(|)EF'(e) =e for all i>0, sincee is a fixed point. This implies
fixF= | J{ F'(]) | i=0} £ e, showingdfix F is least. []

This produces the primary result of the chapter:

6.12 Ddinition:
The meaning of a recursive specificatioaH(f) is taken to be fix F, the least fixed point
of the functional denoted by F.

Examples of recursive specifications and their least fixed point semantics are given in
Section 6.6. First, a series of proofs are needed to show that semantic domains are cpos and
that their operations are continuous.

6.5 DOMAINS ARE CPOS

The partial orderings defined in Section 6.3 introduce internal structure into domains. In this
section we define the partial orderings for primitive domains and the compound domain con-
structions. The orderings make the domains into cpos. Our reason for using cpos (rather than
pointed cpos) is that we want ordinary sets (which are discretely ordered cpos) to be domains.
The lifting construction is the tool we use to make a cpo into a pointed cpo.

What partial ordering should be placed on a primitive domain? Each of a primitive
domain’s elements is a distinct, atomic answer value. For example, in IN,zZeottandone
are answer elements, and by no means a@mescontain more information tharero (or vice
versa). The information is equal in “quantity” but disjoint in value. This suggests that N has
the discrete orderingaC b iff a=b. We always place the discrete partial ordering upon a
primitive domain.

6.13 Proposition:
Any set of elements D with the discrete partial ordering is a cpo, and any operation
f: D— E is continuous.

Proof: Trivial, as the only chains iD are sets of one element.]

The partial orderings of compound domains are based upon the orderings of their com-
ponent domains. Due to its importance in converting cpos into pointed cpos, the partial order-
ing for the lifting construction is defined first.

6.14 Ddinition:

For a partially ordered set A, its lifting Ais the set AJ { 1}, partially ordered by the
relation dc, dv iff d= |, or d, d€A and dc, d.

6.5 Domains Are Cpos 105

6.15 Proposition:

If A'is a cpo, then Ais a pointed cpo. Further(Ax.€): A — B is continuous when
(*x.§:A—=B is.

Proof: Left as an exercisel]

For the cpo N, the pointed cpo Ns drawn as:

Zero one two three

6.16 Ddinition:

For partially ordered sets A and B, their product xB is the set
{(a, b) | acAandbeB} partially ordered by the relatior(a, b) Ca.g (&, br) iff aCy &
and bty b

6.17 Proposition:

If A and B are (pointed) cpos, thenx8B is a (pointed) cpo, and its associated operation
builders are continuous.

Proof: Any chainC in AxB has the formC={(a;, b) | €A, bEB, i€l }, for some
index setl. By Definition 6.16, bothM={ g | i€l}andN={b; | i€l} are chains inA
andB respectively, with lubg_|[M and | |N. That | |C= (| M, |_|N) follows from the
definition of lub. ThusAx B is a cpo, and the pairing operation is continuousA(#ndB
are both pointed, |(, |) is the least element iAx B. This element is distinct from the
introduced by lifting.) To show thdstis continuous, consider the chalmabove:

LI{ fstla. by) | i€l} = [[{& |i€l}
=fst(_[{a [il}, [[{b |i€l})
=fst(|_I{(a, by) | iEl}).

The proof forsndis similar.[]
It is straightforward to generalize Definition 6.16 and Proposition 6.17 to products of arbitrary

size.
Here is a sample product construction; B, =

106 Domain Theory Il: Recursively Defined Functions

(true, true) (false true) (true, falsg (false falsg
(L, true) (true, |) (false |) (], false
(LD

Now that the partial ordering upon products has been established, we can state an impor-
tant result about the continuity of operations that take arguments from more than one domain.

6.18 Proposition:

A function f D;x D,x - - -x D,— E is continuous iff it is continuous in each of its indivi-
dual arguments; that is, f is continuous i ®D,x - - -x D, iff it is continuous in every
D;, for 1=<i=<n, where the other arguments are held constant.

Proof: The proof is given fof: D;x D,— E; a proof for general products is an extension
of this one.

Only if: Let f be continuous. To showWcontinuous inD4, set its second argument to
somex€& D,. For chain {d; | €Dy, i€l}, | [{f(di,x) | i€} =f(|{(d,Xx) | i€l}), as
fis continuous; this equaf§| |{ d; | i€l}, | [{x}) =f(I{d |i€l}, X). The proof for
D, is similar.

If: Let f be continuous in its first and second arguments separately, and let
{(a,b) | €D4, beD,,i€l} be a chain. Then f(| |{(&,b) | i€l})
=f({a [i€l}, L{b |j€l}), = U{f@a, LI{b |j€l}) | i€l} by f's continuity on
its first argument; this equals | |{ LI{f(a,by) [j€I} | i€l}
= |J{f(a,) | i€l andjEl} as taking lubs is associative. Now for each paar, {;)
take k= max(,j). For example, ifi<j, k is j, and then &, by) € (&, b)) = (g, b;), as
g; Ca since {g | i€l} is a chain. This impliesf(a;, by) E f(a, by). Similar reasoning
holds when j<i. This meansf(a;, by) S f(ag, b)) < | J{ f(ax, by) | kEl}, implying
LI{ f(a,) [i€l, jel}y £ [|{f(a, b | kel}. But for all kel, f(a,by) is in
{f(a, by) | i€l, jel}, implying [|{ f(a, by) | kEl} C [|{ (&, b) |i€l, j€I}, and so
the lubs are equal. This concludes the proof, sinte{f(a, b)) |i€l, jel}
= L{f(a. b | kel} = [[{f(a, by) [i€l}. O

6.19 Ddinition:

For partial orders A and B, their disjoint union AB is the set
{(zerqga) | ac A} U {(one b) | be B} partially ordered by the relation da,g d: iff
(d= (zerg a), di= (zerg ar), and a=, a) or (d= (one b), d= (one by), and bty by).

6.5 Domains Are Cpos 107

6.20 Proposition:

If A and B are cpos, thenAB is a cpo, and its associated operation builders are con-
tinuous.

Proof: Left as an exercisel]

As an example, §+ INl is:

(zeratrue) (zerq false (one zerg (one oné (ong two) - - -
(zera |) (one |)
6.21 Ddinition:

For partially ordered sets A and B, their function space> is the set of all continuous
functions with domain A and codomain B, partially ordered by the relatiog fs g iff
foralla€A, f(a) S 9(a).

6.22 Proposition:

If A and B are cpos, then4 B is a cpo, and its associated operation builders are con-
tinuous.

Proof: For the chairC={ fi: A—B | i€l }, for eachg€A, the setA = {fi(a) | i€l }is

a chain inB, due to the partial ordering. Sin&eis a cpo,| | A; exists for all such). Use
these lubs to define the functign A— B such thatg(a) = | | A for a EA. We first
show thatg is continuous: for a chailX = { €A | j€J}, | |{9(g) | €I} equals
LI{ L{fi(g) |i€l} | j&3} by the definiion of g; this value equals
L{L{fi(g) [j€3} | i€l} as Ilubs are associative; this value equals
LI{fi(LI{a |j€}) | i€l} as each f; is continuous; and this equals
LI{fi(LUX) | i€} =g([|X). Thatg is the lub of the chain follows by definition of the
partial ordering.

To show that function application is continuous, > | |{ fi: A—=B | i€l }; then
LI{fi(@ |i€l} =g(@) =(_|{fi |i€l}(a), taking care of the first argument; and
LI{o(&) [j€3} = o(|U{a |j€I}) by the continuity ofg, handling the second argu-
ment.

Finally, for abstraction, let § | i€l } be a set of expressions such that for @A,
{[a/{g | i€l } is a chain inB. Then {Ax.g | i€l} is a chain inA— B by definition of
the partial ordering. Earlier in the proof we saw tHa{ Ax.g | i€l} is the functiong
such that g(@ =[]{(ax.g)@) |i€l} =|[{[a/{e |i€El}. Thus, g =

108 Domain Theory Il: Recursively Defined Functions

M. | |{[a/Xg |i€l} = Ax. | [{[x/{g | i€l} by renaming the argument identifier; this
equalsix. | |{ g | i€l} by definition of substitution. Hence abstraction is continuous.
L]

6.23 Corollary:
If Ais a cpo and B is a pointed cpo, therAB is a pointed cpo.

Proof: The least defined element &— B is the functionf: A— B, ddined asf(a) = by,
whereby is the least defined elementih []

The partial ordering o\— B is known as theointwiseordering, forf C g iff f produces
less-defined answers thanat all argument points. The pointwise ordering formalizes the
method of ordering functions based on the subset inclusion of their graphs. As an example, if
we represent a function by its graph and not include any argument, answer pairs of the form
(t,), the domain B— B| appears:

{(true, true), (false true), (|, true)} {(true false), (false false, (| ,false}

{(true, true), {(true, true), {(true,falsg, {(true, falsg,
(false true)} (false false} (false true)} (false false }

{(true, true)} {(false true)} {(falsefals§} {(true, falsg}

{}

Since B is a pointed cpo, so is B> B|. The least element is not theintroduced by lifting,
but is the proper functiori{. |).
The preceding results taken together imply the following.

6.24 Theorem:

Any operation built using function notation is a continuous function.

The least fixed point semantics method operates on pointed cpos. The least element of a
domain gives a starting point for building a solution. This starting point need not hete
ment added by lifting: Proposition 6.17 and Corollary 6.23 show that least elements can natur-
ally result from a compound domain construction. In any case, lifting is an easy way of creat-
ing the starting point. In the examples in the next section, the symbell be used to stand
for the least member of a pointed cpo, regardless of whether this element is due to a lifting or
not.

We will treatfix as an operation builder. (See Theorem 6.11.) For any pointe® coal

6.5 Domains Are Cpos 109

continuous functiorF:D— D, fix F denotes the lub of the chain induced frém From here
on, any recursive specificatide F(f) is taken as an abbreviation fbe fix F.
Since it is important to know if a cpo is pointed, the following rules are handy:

ispointedP) = false whereP is a primitive domain
ispointedAx B) = ispointed(A) andispointedB)
ispointed A+ B) = false

ispointed A— B) = ispointed(B)

ispointedA) = true

6.6 EXAMPLES

Now that the theory is developed, we present a number of old and new recursive function
specifications and determine their least fixed point semantics.

6.6.1 Factorial Function

We examine the factorial function and its specification once more. Recall that
fac: Nat— Nat is defined as:

fac=An. n equals zere> ond] ntimesfac(n minus ong

which is an acceptable definition, sinilet is a pointed cpo, implying thadat— Nat is also.
(Here is one small, technical point: the specification should actually read:

fac= An. nequals zere> one| (let n:= fac(n minus ongin ntimes r)

becaus¢imesuses arguments froMNat and not fromNat. We gloss over this point and say
that times is strict on Nay arguments.) The induced functional
F: (Nat—Nat)— (Nat— Nat) is:

F = Af.An. nequals zere> ong] ntimesf(n minus ong

The least fixed point semanticsfaicis fix F= | |{ fag | i=0}, where:

facy = (An.]) = |ENat— Naf
fag,,=F (fag) fori=0

These facts have been mentioned before. What we examine now is the relationship between
fixF and the operational evaluation dac. First, the fixed point property says that

fix F= F(fix F). This identity is a useful simplification rule. Consider the denotation of the
phrase fix F)(thred. Why does this expression stand &ix? We use equals-for-equals substi-
tution to simplify the original form:

110 Domain Theory II: Recursively Defined Functions

(fix F)(three
= (F (fix F))(threg), by the fixed point property
= ((Mf.ANn. n equals zere> ong] n timesf(n minus ony(fix F))(thred
= (An. n equals zere> ond] n times(fix F)(n minus onP(threg
We see that the fixed point property justifies the recursive unfolding rule that was informally

used in Section 6.1.
Rather than expandingX F) further, we bindthreeto n:

= three equals zere> on€g] three timegfix F)(three minus one

= three timegfix F)(two)

= three timeqF (fix F))(two)

= three timeq(Af.An. n equals zere> ong] n timesf(n minus on¥(fix F))(two)
= three timegAn.n equals zere> ond] n times(fix F)(n minus on¥(two)

The expressiorfik F) can be expanded at will:

= three timegqtwo times(fix F)(ong)
= three timegqtwo times(one timedfix F)(zerg))

= SiX

6.6.2 Copyout Function

The interactive text editor in Figure 5.3 utilized a function caltegbyoutfor converting an
internal representation of a file into an external form. The function’s definition was not
specified because it used recursion. Now we can alleviate the omission. The domains
File= Record and Openfile= Record x Record were used. Functiogopyoutconverts an

open file into a file by appending the two record lists. A specificationcopyout
Openfile— File| is:

copyout= A(front, back. null front— back
[copyou((tl front), ((hd fron{ cons back

It is easy to construct the appropriate functioRacopyouthas the meanindik F). You
should prove that the functioR (|) is capable of appending list pairs whose first component
has lengthi - 1 or less. This implies that the lub of te(]) functions, ixF), is capable of
concatenating all pairs of lists whose first component has finite length.

Here is one more remark aboebpyout its codomain was stated aboveFite|, rather
than justFile, as originally given in Figure 5.3. The new codomain was used because least
fixed point semantics requires that the codomain of any recursively defined function be
pointed. If we desire a recursive versionampyoutthat used-ile as its codomain, we must

6.6.2 Copyout Function 111

apply the results of Exercise 14 of Chapter 3 and use a primitive recursive-like definition. This
is left as an important exercise. After you have studied all of the examples in this chapter, you
should determine which of them can be handthout least fixed point semantics by using
primitive recursion. The moral is that least fixed point semantics is a powerful and useful tool,
but in many cases we can deal quite nicely without it.

6.6.3 Double Recursion

Least fixed point semantics is helpful for understanding recursive specifications that may be
difficult to read. Consider this specification fgr Nat— Nat :

g= An.nequals zere> ong] (g(n minus ongplus gn minus ony minus one

The appropriate functiondt should be obvious. We gain insight by constructing the graphs
for the first few steps of the chain construction:

graph(F°(1))={ }

graph(F*(])) = {(zera ong}

graph(Fz(L)) ={(zerq ong, (ong ong}

graph(F3(J_)) = {(zerq ong, (one oneé, (two, one}
You should be able to construct these graphs yourself and verify the results. FeiOall
graph(F *1(]))= {(zerq one, (ong one, - - -, (i,ond}, implying (fixF) = An.one The
recursive specification disguised a very simple function.

6.6.4 Simultaneous Definitions

Some recursive specifications are presented as a collection of mutually recursive
specifications. Here is a simple example offaNat— Nat and ag: Nat— Nat such that
each function depends on the other to produce an answer:

f=2AX. x equals zere>g(zerg [f(g(x minus on® plus two
g=Ay.y equals zere> zerd] y timesf(y minus ong

Identifierg is free inf's specification and is free ing's. Attempting to solve’s or g's
circularity separately creates a problem, for there is no guaranteé ithatefined without a
well-defined function forg, and no function forg can be produced without a function for
This suggests that the least fixed points f@and g be formed simultaneously. We build a
functional overpairs:

F: ((Nat— Nat) x (Nat— Nat)) — ((Nat— Nat) x (Nat— Nat)),
F=A(f,0). (AX. x equals zere> g(zerg [f(g(x minus onP plus twq
A\y.y equals zere> zerd] y timesf(y minus ong)

112 Domain Theory II: Recursively Defined Functions

A pair of functions ., p) is sought such thd(a,) = (.,).
We build a chain of function pairs. Here are the graphs that are produced by the chain
construction (note thalt stands for the pair (. |), (A\n. |))):

FO=})
F ()= ({}, {(zera zerg })
F2(])= ({(zerq zerg}, {(zera zerg})
F3(J_) = ({(zerq zerg, (one two) }, {(zerq zerg, (one zerg })
F4(J_) = ({(zerq zerg, (ong two), (two, two) },
{(zerq zerg, (ong zerg, (two, four) })
F°(]) = ({(zerqg zero, (ong two), (two, two) },
{(zerq zerg, (one zerg, (two, four), (three siX) })

At this point, the sequence converges: forialb, F' (1) = F°(). The solution to the mutually
recursive pair of specificationsfix F, andf = fst(fix F) andg= sndfix F).

Any finite set of mutually recursive function definitions can be handled in this manner.
Thus, the least fixed point method is powerful enough to model the most general forms of
computation, such as general recursive equation sets and flowcharts.

6.6.5 The While-Loop

Recall that a specification of the semantics offale-loop is:
C[while B do C] = As.B[B] s— C[while B do C] (C[C] 9) [s
The definition is restated in terms of tfie operation as:
C[while B do CJ = fix(Af.As.B[B] s—=f(C[C]9) [9)

The functional used in this definition is interesting because it has functiorﬁﬂbtge Store,
whereStore= |ld— Nat

Let's consider the meaning of the sample loop command
C[while A>0do (A:=A-1; B:=B+1)]. We let test=B[[A>0] and adjust
= C[A: =A-1; B:=B+1]. The functional is:

F=Af.As.test s>f(adjusts) || s

As is our custom, we work through the first few steps of the chain construction, showing the
graphs produced at each step:

graph(F°())={}

graph(F (1)) = { ({(IA], zero, ([B], zer9, - - - },
{([Al, zero, ([B], zer9, - }), -,
({(TAl, zero, ([B], four), - - - },
{([Al, zero, ([B], four),---}), ---}

6.6.5 The While-Loop 113

The graph forF(]) is worth studying carefully. Since the result is a member of
Store— Store, the graph contains pairs of function graphs. Each pair shows a store prior to
its “loop entry” and the store after “loop exit.” The members shown in the graph at this step
are those stores whose [A] value equatro. Thus, those stores that already map [A] to
zerofail the test upon loop entry and exit immediately. The store is left unchanged. Those
stores that require loop processing are mapped to

graph(F2(])) =
{ ({({[A], zero, ([B], zero, - - -}, {([Al, zero, ([B], zerg,---}), -,
({(TAl, zero, ([B], four), - - - }, {(IAl, zero, ([B], four)), ---1}), ---,
({(TA]. one, ([B], zera, - - -}, {([Al, zero, ([B], one, ---1}), - -,
({(IAl, one, ([B], four), - - -}, {(IAl, zero, ([B], five), --}), -~}

Those input stores that require one or fewer iterations to process appear in the graph. For
example, the fourth illustrated pair denotes a store that has [A] seteand [B] set tofour
upon loop entry. Only one iteration is needed to reduce [A] dowrdm,the condition for
loop exit. In the process [B] is incrementedftoe

graph(F3(])) =
{ {(TAl. zero, ([BI, zero, - - - }, {([Al, zero, ([B], zer9, -~ -}), -,
({(AL. zer9, ([BI, four), - - }, {([Al, zerd, ([BI fou), - -~ }), - --,
({@AL, ong, (B]. zerd, -}, {([A]. zerd, ([B], ong, - 1}), -+,
({(1A1, one, ([BI, foun), - - - }, {(IAl, zer9, ([BI, five), - - - }),
({(IAl. two), ([BI. zero, - - - }, {(IAl. zero, ([B]. two), - - - }), - -,
({([A], two), ([B], four), - - -}, {(IA], zero, ([B], siX), --}), -}

All stores that require two iterations or less for processing are included in the graph. The
graph ofF”l(J_) contains those pairs whose input stores finish processiniggrations or less.

The least fixed point of the functional contains mappings for those stores that conclude their
loop processing in a finite number of iterations.

The while-loop’s semantics makes a good example for restating the important principle
of least fixed point semantics: the meaning of a recursive specification is totally determined by
the meanings of its finite subfunctions. Each subfunction can be represented nonrecursively in
the function notation. In this case:

Cl[while Bdo C] = | J{ As.],
AsB[B]s—|1[s
As.B[B] s— (B[BI(CICls)— | [CICI9) [s,
As.B[B] s— (B[BI(C[C] s) —~
(BIBI(CICI(CICI9)— | [CICI(CIC] 9))
[CICI9)
Is -}

The family of expressions makes apparent that iteration is an unwinding of a loop body;

114 Domain Theory II: Recursively Defined Functions

this corresponds to the operational view. Can we restate this idea even more directly? Recall
thatC[diverge] = As. | . Substituting the commands into the set just constructed gives us:

C[while B do C] = | |{ C[diverge],
C[if B then diverge else skif,
C[if B then (C;if B then diverge else skip else skid],
C[if B then (C;if B then
(C;if B then diverge else skip
else skip else ski, --- }

A family of finite noniterative programs represents the loop. Itis easier to see what is happen-
ing by drawing the abstract syntax trees:

diverge if if if
B diverge skip B ; skip B ; skip

C if c if
B diverge skip B ; skip

C if

B diverge skip

At each stage, the finite tree becomes larger and better defined. The obvious thing to do is to
place a partial ordering upon the trees: for all commanddiggrget C, and for commands
C,and G, G, c G iff C; and G are the same command type (have the same root node) and
all subtrees in ¢ are less defined than the corresponding trees;in This makes families of

trees like the one above into chains. What is the lub of such a chain? It is the infinite tree
corresponding to:

if Bthen (C;if Bthen (C;if Bthen (C; - - -) else skip) else skip) else skip

Draw this tree, and defink = if Bthen (C; L) else skip The while-loop example has led
researchers to study languages that contain infinite programs that are represented by recursive
definitions, such ak. The goal of such studies is to determine the semantics of recursive and
iterative constructs by studying their circularity at the syntax level. The fundamental discovery

of this research is that, whether the recursion is handled at the syntax level or at the semantics
level, the result is the sameC[while B do C]| = C[L]. An introduction to this approach is

found in Guessarian (1981). We stay with resolving circularity in the semantics, due to our
large investment in the existing forms of abstract syntax, structural induction, and least fixed
point semantics. Finally, the infinite tree L is abbreviated:

6.6.5 The While-Loop 115

B ; skip

Every flowchart loop can be read as an abbreviation for an infinite program. This brings us
back to representations of functions again, for the use of finite loops to represent infinite
flowcharts parallels the use of finite function expressions to denote infinite objects— func-
tions. The central issue of computability theory might be stated as the search for finite
representations of infinite objects.

6.6.6 Soundness of Hoare’s Logic

The facts that we uncovered in the previous example come to good use in a proof of soundness
of Hoare’s logic for awhile-loop language. Hoare’s logic is an axiomatic semantics, where
axioms and inference rules specify the behavior of language constructs. In Hoare’s logic, a
behavioral property of a command [C] is expressed as a propod{@}Q. P and Q are
Boolean expressions describing properties of the program variables used in [C]. Informally
interpreted, the proposition says “# holds true prior to the evaluation of C and if C ter-
minates, ther@ holds true after the evaluation of C.” A formal interpretation of the proposi-
tion using denotational semantics is:P{C}Q is valid iff for all s= Store B[P]s= true and
C[C]s= | imply B[Q](C[C] s) = true.”

Figure 6.1 presents Hoare’s logic for commands in Figure 5.2 augmented mhilee
loop. Lack of space prevents us from specifying some example prop-ositions and performing
their verification. But we will show that the axiom and rules in the figuresaend that is, if
the antecedent propositions to a rule are valid, then the consequent of the rule is also valid.
The significance of the soundness proof is that the axiom and rules are more than empty
definitions— they are theorems with respect to the language’s denotational semantics. Thus,
the axiomatic definition is complementary to the denotational one in the sense described in the
Introduction.

Here is the proof of soundness:

1. Axiom a For arbitrary Boolean expressioRaandQ, identifier [x], and expression [E],
we must show thaB[[[E/x]P] s= true andC[x:=E]s= | imply thatB[P][[x] + E[E] s|s
= true. But this claim was proved in Exercise 5 of Chapter 5.

2. Rule b We assume each of the three antecedents of the rule to be valid. To show the con-
sequent, we are allowed to assuBfP] s = true andC[[C;C,] s = | ; we must prove that

116 Domain Theory Il: Recursively Defined Functions

Figure 6.1
a) [EXP{x=E}P b) P{C:}Q, QimpliesR R{C,}S
P{C1;C}S
o) B and P{C,}Q, (notB) and P{C,}Q d) P andB{C}P
P{if B then C; elseC,}Q P{while B do C}(notB) and P

B[SI(C[C1;C,]9) = true. First, note thaC[C1;C,]s = | implies that bothC[C1]s = |

and C[C,](CI[C1]s) = |. By the validity of P{C;}Q and C[C;]s=]|, we have
B[QI(C[C1]9) = true. From Qimplies R we obtainB[R](C[C]s) = true. Finally, by
the validity of R{C,}S and C[C,](C[C1]9) = |, we get B[F(C[C,](C[C.]9) =

B[S(C[C;C5]) = true.

Rule ¢ The proof is straightforward and is left as an exercise.

Rule d We assume the antecedenaBd P{C}P is valid. We also assume thBf P]s =

true and C[while B do C]s= | . We must showB[(notB) and FJ(C[while B do C]s) =

true. The following abbreviations will prove helpful to the proof:

F=MAs.B[B]s—f(C[C]9) [s
Fi=(FoFo - -°F)(As.]), Frepeatedtimes
CI[C]'=C[C] °C[C] © - - - ° C[C], C[C] repeated times

Since C[while Bdo CJs= | |{Fi(s) | i=0} = |, there must exist som&=0 such that
Fk(s) = | . Pick the least suck that satisfies this property. (There must be a least one, for
the Fi’s form a chain.) Furtherk is greater tharzerq for Fy is (As.]). Hence,Fy(s) =
B[B] s— F_1(CI[C] 9 [s. If B[B] s = false thenk must beone if B[B] s = true, then
F(s)=F.1(CI[C]s). This line of reasoning generalizes to the claim that
F(s) = F1(C[C]*1s), which holds becaudg, is the least member of tHe’s that maps

to a non{ value.

Let s* = C[C]¥s. Now F4(s*) = B[B] s — Fo(s*) [S". Clearly, B[B] s* must be
falseandF4(s*) = s*, elseFy(s) = F1(s") = Fo(CI[C] s") = (As.)(CIC] kg) = |, which
would be a contradiction. So we have tBfB] s* = B[B](F,) = false

Now consideB[P]s. by assumption, it has valueue. By using the assumption
thatB and P{C}P is valid, we can use reasoning like that taken in the previous paragraph

6.6.6 Soundness of Hoare Logicl17

to prove for Osi<k that B[P]J(C[C]'s) = true. Hence, B[(notB)andFs* =
B[(notB) and FJ(Fys) = true.

Now we complete the proof. We know thig C fix F = C[while B doC]. Hence,
F(9) CC[whileBdoC]ss, and true = B[(notB) andPF(F¢s) c
B[(notB) and FJ(C[while B do C])s) by the monotonicity oB[[(notB) and F]. But this
implies thatB[[(notB) and FJ(C[while B do C]s) = true, because B is discretely ordered.

6.7 REASONING ABOUT LEAST FIXED POINTS

We use mathematical induction to reason about numbers and structural induction to reason
about derivation trees. An induction principle is useful for reasoning about recursively
specified functions. Since the meaning of a recursively specified function is the limit of the
meanings of its finite subfunctions, tfiged point induction principl@roves a property about
a recursively defined function by proving it for its finite subfunctions: if all the subfunctions
have the property, then the least fixed point must have it as well.

We begin by formalizing the notion of “property” as anclusive predicate A predicate
P is a (not necessarily continuous) function from a donfaito B.

6.25 Ddinition:

A predicate P D— B is inclusive iff for every chain CD, if P(c)=true for every €C,
then R|_| C) =true also.

We only work with inclusive predicates.
Say that for a recursively defined functiénA— B, f= F(f), we wish to show thaP(f)
holds true. IfP is an inclusive predicate, then we can use the factfthéi F as follows:

1. Show thaP(]) holds, for| € A—B. _
2. Assuming for arbitrary= 0, thatP(F'(])) holds, show thaP(F'*1(])) holds.

Mathematical induction guarantees that forra0, P(F"(])) holds. SinceP is inclusive, we
have thaP(fix F) holds.
A more elegant form of this reasoning is fixed point induction.

6.26 Ddinition:

The fixed point induction principle: For a pointed cpo D, a continuous functional
F: D— D, and an inclusive predicate:lD— B, if:

1. P(]) holds.

2. For arbitrary de D, when Rd) holds, then IFF(d)) holds.

then Rfix F) holds as well.

The proof of the validity of the fixed point induction principle is left as an exercise.
Fixed point induction helps us to show that tpéunction defined in the example of Sec-
tion 6.6.3 is indeed the constant function that maps its argumentseto

118 Domain Theory Il: Recursively Defined Functions

6.27 Proposition:
For all n€ Nat, gn) = | implies dn) =one.

Proof: We use fixed point induction on the predic&€) = “for all n€ Nat, f(n)= |
implies f(n) = one ” For the basis step, we must show tf{.m. |) holds. For an arbi-
trary nENat, (\m.])(n)= |, so the claim is vacuously satisfied. For the inductive step,
we assume the inductive hypotheBid) and showP(F(f)). For an arbitrarynE Nat, we
must consider the following two cases to determine the valu&fdin):

1. nequalszera thenF(f)(n)= ong and this satisfies the claim.
2. nis greater thazera thenF(f)(n) = (f(n minus ongplus {n minus ony minus one
Consider the value dfn minus ong

a. |Ifitis |, then sinceplusandminusare strict,F(f)(n)= |, and the claim is vacu-
ously satisifed.

b. Ifitis non-|, then by the inductive hypothesié minus ong= one and simple
arithmetic shows tha&(f)(n) = one []

How do we know that the predicate we just used is inclusive? It is difficult to see how
the logical connectives “for all,” “implies,” “and,” " =,” etc., all fit together to make an
inclusive predicate. The following criterion is helpful.

6.28 Proposition:

(Manna, Ness, & Vuillemin, 1972) Let f be a recursively defined function that we wish to
reason about. A logical assertion P is an inclusive predicate if P has the form:

for all d,EDy, - - -, dyE Dy, A_|”\|l IXCk)le?QJk)
j= =

for m=0, n=0, p=0, where Q, can be either:

1. A predicate using onlyid - - -, d,, as free identifiers.
2. An expression of formEE E,, where g and B are function expressions using only
f, dq, - - -, dy, as free identifiers.

So an inclusive predicate can be a universally quantified conjunction of disjunctions. Here is
an example: “for allnENat (| =f(n)) and @ equals oner f(n) £ zerg.” By using the fol-

lowing logical equivalences (among others) we can show that a large variety of predicates are
inclusive:

(EiEE)and & CEy) iff (Ei=Ep)
(P, impliesP,) iff ((notP;)orP,)
(not(notP,)) iff Py
(Pq or (P, andPy)) iff ((P,orP,)and P4 orP3))
For example, the predicate used in the proof of Proposition 6.27 is inclusive because we can

use the logical equivalences just mentioned to place the predicate in the form specified in Pro-
position 6.28. The proof of Proposition 6.27 was conducted with the predicate in its original

6.7 Reasoning about Least Fixed Point$19

form, but it's important to verify that the predicate is convertible to an inclusive one.
Fixed point induction is primarily useful for showing equivalences of program constructs.
Here is one example: we define the semanticsrepaat-loop to be:

ClrepeatCuntil B] = fix(Af.As.lets = C[C]sin B[B]s—s [(fs))

6.29 Proposition:

For any command [C] and Boolean expression[B], C[C;while-BdoC]
= C[[repeatCuntil B].

Proof: The fixed point induction must be performed over the two recursive definitions
simultaneously. The predicate we use is:

P(f, g) = “for all s€ Store, f(C[C]s)= (99"

For the basis step, we must show tRéf\s.]), (As.])) holds, but this is obvious. For the
inductive step, the inductive hypothesisR§, g), and we must show th&(F(f), G(qg))
holds, where:

F=(fAs.B[-B]s—f(C[C]9) [9

G= (M.As.lets=C[C]sinB[B] s —=s[(fs))
For an arbitranse Store, if s= |, thenF(f)(C[C] |) = | = G(g)(]), becaus€[C], F(f),
and G(g) are all strict. (The fact tha€[C] is strict for any C& Command requires a
small, separate proof and is left as an exercise.) On the other hasd| ithen consider
the value ofC[C]s. Ifitis |, then agairF(f)(]) = | = (lets= | inB[B] s—s [(g9)))
= G(9)(]). So say tha€[C] sis some defined stoy. We have that:

F(f)(s0) = B[~Blso = f(C[C] o) [so = BI[B] s0 = %0 | f(C[C])
and

G()(9=B[Blss—> % [(9%)

By the inductive hypothesis, it follows tha{(C[C]s)=(g9%). This implies that
F(f)(s0) = G(g)(s), which completes the proof.]

SUGGESTED READINGS

Least fixed points: Bird 1976; Guessarian 1981; Kleene, 1952; Park 1969; Manna 1974;
Manna, Ness, & Vuillemin 1972; Manna & Vuillemin 1972; Rogers 1967

Complete partial orderings: Birkhoff 1967; Gierz, et al. 1980; Kamimura & Tang 1983,
1984a; Milner 1976; Plotkin 1982; Reynolds 1977; Scott 1976, 1980a, 1982a; Wads-
worth 1978

120 Domain Theory Il: Recursively Defined Functions

EXERCISES

1. Simplify the following expressions to answer forms or explain at some point in the
simplification why no final answer will ever be found:

a. f(thred, for f defined in Section 6.6.4.

b. f(four), for f defined in Section 6.6.4.

c. C[while X>0do(Y:=X; X:=X-1)]sy, for s5=[[X] = two]newstore for the while-
loop defined in Section 6.6.5.

d. C[while X> 0doY:=X] newstorefor thewhile-loop defined in Section 6.6.5.

2. For each of the recursively defined functions that follow:

i. Build the functionalF associated with the definition.
ii. Show the (graph) set representationsF9{(2), FX(9), F?(®), and F (&), for
=M.,
ii. Define |_J graph(F'(2)).
iv. Attemplt(;o give a nonrecursively defined function whose denotation is the value
in part iii.
a. f:NatxNat—Nat, f(mn)=mequalszere>n]| oneplus {m minusongn)
b. g:Nat —Nat, g=2An.nplugnequalszere>zero[g(g(n minus ony)
c. (Ackermann’s functionjA: Natx Nat— Nat,
A(m,n) = m equals zere=n
[nequals zere= A(m minus ongone
I A(m minus ongA(m,n))
d. f:NatxNat—Nat, g: Nat—Tr|,
f(m,n) = g(n) — m [| f(m minus twon minus twd
g(m)= m equals zere= true]| m equals one=false[] g(m minus twd

3. Recall thanewstore- (Ai. zerg).

a. Without using fixed point induction, prove thafwhile A> 0 do A:=A-1]sy = new-
store wheres, = [[A] > two]newstore
b. Use fixed point induction to show th@f whileA=0 do B:=1]newstore= |.

4. a. For the functiog defined in Section 6.6.3, why can’t we prove the property “for all
n& Nat, g(n) = on€’ using fixed point induction?
b. Prove the above property using mathematical induction. (Hint: first prove “for all
nE Nat, (F™1(An.]))(n) = one”)
c. Based on your experiences in part b, suggest a proof strategy for proving claims of
the form: “for all nENat, f(n)=|.” Will your strategy generalize to argument
domains other thaNat?

Exercises 121

Use the logical equivalences given in Section 5.4 to formally show that the following
predicates are inclusive fér Nat— Nag

a. P(f)= “forall nENat, f(n) = | impliesf(n) c zerd’
b. P(f,g)= “forall nENat f(n)= | impliesf(n)=g(n)”

Give counterexamples that show that these predicatasaneclusive:
c. P(f)= “there exists am& Nat, f(n)= | ”
d. P(f)="f=(An.n),” for f: Nat—Nay

For the recursively defined function:

factodm,n) = m equals zere=> n|] factodm minus ongmtimes i

prove the property that for ale Nat, fac(n) = factoqn,oné), wherefac is defined in Sec-
tion 6.6.1:

a. Using fixed point induction.
b. Using mathematical induction.

When is it appropriate to use one form of reasoning over the other?

For the functionaF : (Nat— Nat) — (Nat— Nat),

F = Af.Am. mequals zere> one|] mequals one>f(m plus twQ || f(m minus twd
prove that all of these functions are fixed pointg-of

a. An.one
b. An.((nmodtwgequals zerp— ong] two
c. An.((nmodtwgequals zerp—ong] |

Which of the three is the least fixed point (if any)?

Prove the following properties for alllBBoolean-expr and € Command:

a. C[while B do C] = C[if BthenC;while B do Celse skid]

b. C[repeatCuntil B] = C[C; if B then skip else repeaC until B]
c. C[while B do C] = C[(while B do C);if BthenC]

d. C[if BthenrepeatCuntil -B] = C[while B do C]

where thewhile-loop is defined in Section 6.6.5, thiepeatloop is defined in Section
6.7, andC[[skip] = As.s

Formulate Hoare-style inference rules and prove their soundness for the following com-
mands:

a. [if BthenC] from Figure 5.2.
b. [diverge] from Figure 5.2.
c. [repeatCuntil B] from Section 6.7.

122 Domain Theory Il: Recursively Defined Functions

10.

11.

12.

13.

14.

15.

16.

17.

18.

A language designer has proposed a new control construct eali@agle. It satifies this
equality:

ClentangleBin C] = CJif Bthen(C; (entangleBin C); C) elseC]

a. Define a semantics fantangle. Prove that the semantics satisfies the above pro-
perty.

b. Following the pattern shown in Section 6.6.5, draw out the family of approximate
syntax trees for §ntangleB in C].

c. Comment why thevhile- andrepeatloop control constructs are easily implement-
able on a computer whilentangleis not.

Redraw the semantic domains listed in exercise 4 of Chapter 3, showing the partial order-
ing on the elements.

For cpod andE, show that for anyf, g: D—E, f cp_.g g iff (for all a;, a, €A, a; Ea &
impliesf(a;) S5 9(a2)).-

Why isfix F: D— E continuous whelfr: (D— E) — (D—E) is?

Show thaD* is a cpo wherD is and that its associated operations are continuous.
Show that the operation{>_[| _): TrxDx D — D is continuous.

Show that the composition of continuous functions is a continuous function.

The cpod andE areorder isomorphidff there exist continuous functionfsD — E and
g:E— D such thatge f=idp andfe g=idg. Thus, order isomorphic cpos are in 1-1,
onto, order preserving correspondence. Prove that the following pairs of cpos are order
isomorphic. (LetA, B, andC be arbitrary cpos.)

a. Nand N+ N

b. INand NxIN
AxBandBxA
A+BandB+A
Unit— A andA
(Unitx A) =B andA—B
(AxB)—CandA— (B—C)

@~oao

Let A and B be cpos, and le[]B be the usuaA-fold product of B elements. Define

aA
apply: Ax (JTB) — B to be the indexing operation; that epply(a,p) = p| a.
aA
a. Show that the product is order isomorphic with the setfllofunctions with domairA
and codomairB.
b. Given that the semantic domaia— B contains just theontinuousfunctions fromA

Exercises 123

to B, propose a domain construction for the infinite product above that is order iso-
morphic withA— B.

19. Researchers in semantic domain theory often work tdtlnded complete-algebraic
cpos.Here are the basic definitions and results:

An elementde D is finiteiff for all chainsCCD, if d = | | C, then there exists sonue C
such thad c c. LetfinD be the set of finite elements .

a. Describe the finite elements in:

i. N

ii. IP(IN), the powerset of IN partially ordered liy

iii. IN —IN; (hint: work with the graph representations of the functions)
iv. D+E, whereD andE are cpos

v. DxE, whereD andE are cpos

Vi. Di, whereD is a cpo

A cpo D is algebraicif, for everydeD, there exists a chai@ CfinD such that| |C=d. D
is w-algebraicif finD has at most a countably infinite number of elements.

b. Show that the cpos in parts i through vi of part a aralgebraic, wherD and E
representv-algebraic cpos.

c. Show that IN—= N is algebraic but is nob-algebraic.

d. For algebraic cpoB andE, prove that a monotonic function frofmD to finE can be
uniquely extended to a continuous functionDn— E. Prove thatD — E is order iso-
morphic to the partially ordered set of monotonic functions friamD to finE. Next,
show that a function that maps from algebraic &pto algebraic cpde and is continu-
ous onfinD to finE need not be continuous @to E.

A cpo D is bounded complet#, for all a, beD, if there exists a&D such thata t ¢ and
b £ c, thenal b exists inD.

e. Show that the following cpos are bounded completdgebraic:

I. The cpos in parts i through vi in part b, whddeandE represent bounded complete
w-algebraic cpos.

i. D—E, whereD andE are bounded complete-algebraic cpos ané is pointed.
(Hint: first show that for anydefinD and e=finE that the “step function”
(ha.(dca)—e] |) is afinite element inD— E. Then show that anfiD —E is
the lub of a chain whose elements are finite joins of step functions.)

For a partially ordered sé&t, a nonempty seACE is anideal if:

i. Foralla, b€E, if a=A andb C a, thenb&A.
ii. For all a, bEA, there exists some=A such thab E candb C c.

f. For an algebraic cp®, letidD = {A | ACfinD andAisanideal} Show that the par-
tially ordered setifiD, C) is order isomorphic witiD.

20. We gain important insights by applyingpologyto domains. For a cpD, say that a set

124 Domain Theory Il: Recursively Defined Functions

21.

UCD is aScott-open séff:

i. Itisclosed upwards: forah€e U, be D, if ac b, thenb& U.
ii. It contains a lub only if it contains a “tail” of the chain: for all chair@CD, if
| |C€ U, then there exists sonwe C such thatce U.

A collection of setsSC IP(D) is atopology on Diff:

i. Both{} andD belong toS.
ii. ForanyRCS (JRES thatis,Sis closed under arbitrary unions.
iii. ForanyU,vVeS UNVeES thatis,Sis closed under binary intersections.

a. Show that for any cpbD that the collection of Scott-open sets forms a topologypon

b. Describe the Scott-open sets for these cpNst Tr, TrxTr, Nat—Nat
Nat— Naf .

c. Show that every elemedt= D is characterized by a unigue collection of Scott-open
sets, that is, prove that for all distindte€ D, there exists some Scott-open &t D
such that de€U ande&U) or (eeU andd&U). (Hint: first show that the set
D-{e| ecd}, foranydeD, is Scott-open; use this result in your proof.)

Part ¢ says that the Scott-open sets haveTseparation propertyBecause of this
result, we treat the Scott-open sets as “detectable propertieB-elements. Each ele-
ment is identified by the properties that it satisfies.

d. Show that for altl, e D, dC eiff for all open setdJ CD, d& U impliesec U.

A function f: D— E is topologically continuousf for all open setsUCE, f1(U) is open
in D. That is, a set of answer values share a property only because their corresponding
arguments also share a property.

e. Prove that a functioh D— E is chain-continuous (see Definition 6.9) iff it is topo-
logically continuous (with respect to the Scott-topologieoandE).

Section 6.1 is a presentation of Kleenfifst recursion theoremwhich states that the
meaning of a recursive specificatiba F(f) that maps arguments in N to answers in IN

(or nontermination) is exactly the union of tR§) approximating functions. The proof

of the theorem (see Kleene 1952, or Rogers 1967) doesn’t mention continuity or pointed
cpos. Why do we require these concepts for Chapter 6?

Chapter 7

Languages with Contexts

Virtually all languages rely on some notion of context. The context in which a phrase is used
influences its meaning. In a programming language, contexts are responsible for attributing
meanings to identifiers. There are several possible notions of a programming language con-
text; let's consider two of them. The first, a simplistic view, is that the store establishes the
context for a phrase. The view works with the languages studied in Chapter 5, but it does sug-
gest that the context within the block:

begin
integer X; integerY;
Y:=0;
X:=Y;
Y:=1;
X:=Y+1
end

is constantly changing. This is counterintuitive; surely the declarations of the identifiers X
and Y establish the context of the block, and the commands within the block operate within
that context. A second example:

begininteger X;
X:=0;
beginreal X;

X:=1.5
end;
X:=X+1

end

shows that the meaning of an identifier isn’t just its storable value. In this example, there are
two distinct definitions of X. The outer X denotes mtegerobject, while the inner X is a
real object. These objects are different; X happens to be the name used for both of them. Any
potential ambiguities in using X are handled by the scope rules of ALGOL60. The "“objects”
mentioned are in actuality computer storage locations, and the primary meaning of an
ALGOLG6O identifier is the location bound to it. The version of context we choose to use is the
set of identifier, storage location pairs that are accessible at a textual position. Each position
in the program resides within a unique context, and the context can be determined without run-
ning the program.

In denotational semantics, the context of a phrase is modelled by a value called an
environment.Environments possess several distinctive properties:

1. As mentioned, an environment establishes a context for a syntactic phrase, resolving any
ambiguities concerning the meaning of identifiers.

2. There are as many environment values as there are distinct contexts in a program.
125

126 Languages with Contexts

Multiple environments may be maintained during program evaluation.
3. An environment is (usually) a static object. A phrase uses the same environment each
time it is evaluated with the store.

An environment argument wasn’t needed for the languages in Chapter 5, because the pro-
grams in the languages used exactly one environment. The single environment was “pasted
onto” the store, giving a map from identifiers to storable values. In this chapter, that simple
model is split apart into two separate components, the environment and the store.

The primary real-life example of an environment is a complier’s symbol table. A com-
piler uses a symbol table to translate a source program into compiled code. The symbol table
contains an entry for each identifier in the program, listing the identifier's data type, its mode
of usage (variable, constant, parameter, . . .), and its relative location in the run-time computer
store. Since a block-structured language allows multiple uses of the same identifier, the sym-
bol table is responsible for resolving naming conflicts. The schemes for implementation are
many: one is to keep a different symbol table for each block of the program (the portions in
common between blocks may be shared); another is to build the table as a single stack, which
is incremented and decremented upon respective entry and exit for a block. Symbol tables
may be entirely compile-time objects, as in ALGOL68 and standard Pascal, or they can be
run-time objects, as in SNOBOLA4, or they can be used in both phases, as in ALGOL60.

Those portions of a semantics definition that use an environment to resolve context ques-
tions are sometimes called thatic semanticsThe term traditionally describes compile-time
actions such as type-checking, scope resolution, and storage calculation. Static semantics may
be contrasted with the “real” production of meaning, which takes the ndymamic seman-
tics. Code generation and execution comprise the implementation-oriented version of
dynamic semantics. In general, the separation of static from dynamic semantics is rarely clear
cut, and we will not attempt formal definitions here.

Environments are used as arguments by the valuation functions. The meaning of a com-
mand is now determined by the function:

C: Commane> Environment> Store— Storq

The meaning of a command asStore— Store function is determined once an environment
establishes the context for the command. An environment belongs to the domain:

Environment Identifier— Denotable-value

The Denotable-valuedomain contains all the values that identifiers may represent. This
domain varies widely from language to language and its structure largely determines the char-
acter of the language.

In this chapter, we study language features whose semantics are understood in terms of
environments. These features include declarations, block structure, scoping mechanisms,
recursive bindings, and compound data structures. The concepts are presented within the
framework of two languages: an imperative block-structured language and an applicative
language.

7.1 A Block-Structured Languagel27

7.1 ABLOCK-STRUCTURED LANGUAGE

The basic principles and uses of environments are seen in the semantics of a simple block-
structured language. The language is similar to the one defined in Figure 5.2, but includes
declarations and blocks. The new semantic domains are listed in Figure 7.1.

The more realistic store requires a primitive domain of storage locations, and the loca-
tions domain is listed first. The operations are the same as in the algebra in Example 3.4 of
Chapter 3:first-locnis a constant, marking the first usable location in a stoext-locnmaps
a location to its immediate successor in a steayal-locnchecks for equality of two values;
and lessthan-locrcompares two locations and returns a truth value based on the locations’
relative values.

The collection of values that identifiers may represent is listed next. Of the three com-
ponents of théenotable-valuelomain, the_ocationdomain holds the denotations of variable
identifiers, theNat domain holds the meanings of constant identifiers, and BEhealue
domain holds the meaning for undeclared identifiers.

For this language, an environment is a pair. The first component is the function that
maps identifiers to their denotable values. The second component is a location value, which
marks the extent of the store reserved for declared variables. In this example, the environment
takes the responsibility for assigning locations to variables. This is done lrgdheve-locn
operation, which returns the next usable location. Although it is not made clear by the alge-
bra, the structure of the language will cause the locations to be used in a stack-like fashion.
Theemptyenwmust be given the location marking the beginning of usable space in the store so
that it can build the initial environment.

The store is a map from storage locations to storable values, and the operations are the
obvious ones. Errors during evaluation are possible, so the store will be labeled with the
status of the evaluation. Theheckoperation uses the tags to determine if evaluation should
continue.

Figure 7.2 defines the block-structured language and its semantics.

Since theDenotable-valuglomain contains both natural numbers and locations, denot-
able value errors may occur in a program; for example, an identifier with a number denotation
might be used where an identifier with a location denotation is required. An identifier with an
erroneous denotable value always induces an error. Expressible value errors occur when an
expressible value is inappropriately used.

The P valuation function requires a store and a location value, the latter marking the
beginning of the store’s free space. TRdunction establishes the context for a block. The
function augments an environment. The composition of declarations parallels the composition
of commands. A constant identifier declaration causes an environment update, where the
identifier is mapped to its numeral value in the environment. The denotation of a variable
declaration is more involved: a new location is reserved for the variable. This lochtion,
plus the current environmergy, are used to create the environment in which the variable [I]
binds to irLocation(l).

Of the equations for th€ function, the one for composition deserves the most study.
First, consider theheckoperation. If comman&[C1] e maps a store into an erroneous post-
store, therchecktraps the error and preven®C,] e from altering the store. This would be
implemented as a branch around the code fofJJ0he environment is also put to good use:

128 Languages with Contexts

Figure 7.1

V. Storage locations
Domain I € Location
Operations

first-locn: Location

next-locn Location— Location

equal-locn Location— Location— Tr

lessthan-locn Location— Location— Tr
VI. Denotable values

Domain d& Denotable-value Location+ Nat+ Errvalue
whereErrvalue= Unit

VII. Environment: a map to denotable values and the maximum store location
Domain e€ Environment (Id— Denotable-valugx Location
Operations

emptyenvLocation— Environment
emptyen¥ Al. ((Ai. inErrvalue()), I)

accessemid — Environment= Denotable-value
accessenvy Ai.A(map |). magdi)

updateenvid— Denotable-value= Environment= Environment
updateeny Ai.AdA(map). ([iF=d]map 1)

reserve-locn Environment= (Locationx Environmeng
reserve-locr A(map I). (I, (map next-locrgl)))

VIII. Storable values
DomainvE Storable-value: Nat

IX. Stores
Domains& Store= Location— Storable-value
Operations

accessLocation— Store— Storable-value
access M.As. {l)

update Location— Storable-value> Store— Store
update= AlLAVAS.[= V]s

X. Run-time store, labeled with status of computation
Domain p& Poststore- OK + Err
where OK= Err= Store

7.1 A Block-Structured Languagel29

Figure 7.1 (continued)

Operations

return: Store— Poststore
return= As.inOK(s)

signalerr. Store— Poststore
signalerr= As.inErr(9)

check (Store— Poststore) — (Poststore — Poststore)
check £ A p.case9 of
iISOK(s)— (f9)
[isErr(s)—pend

130 Languages with Contexts

Figure 7.2

Abstract syntax:

PE Program

K& Block

D& Declaration

Ce Command

EE Expression

B& Boolean-expr

| € Identifier

NE Numeral

P =K.

K ::= beginD; C end

D ::=D;;D, | constI=N | var |
C:=C;;C, | Ii=E |whileBdoC|K
E:= E1+E2 I | | N

Semantic algebras:

I.-1ll. Natural numbers, truth values, identifiers
(defined in Figure 5.1)

IV. Expressible values
Domain x& Expressible-value Nat+ Errvalue
whereErrvalue= Unit

V.-X. (defined in Figure 7.1)

Valuation functions:

P: Program— Location— Store— Poststore
PIK] = Al. K[K](emptyenv)l
K: Block— Environment> Store— Poststore
K[begin D;C end] = Ae.C[C](D[D] €)
D: Declaration= Environment= Environment
D[D ;D] = D[D>] > D[D4]
D[constl=N] = updateenfl] in Nat(N[N])
D[var I] = Aelet (I1,e@) = (reserve-locn ein (updateenfi] in Locatior(l') e)
C: Command- Environment> Store— Poststore
CIC1:;C,] = Ae.(checKC[C;]) ° (C[C4] €)

7.1 A Block-Structured Languagel31

Figure 7.2 (continued)

C[I: =E] = AeAs.casesdccesseni] e) of
isLocation(l)— (casesE[E] e 9 of
isNat(n)— (return(update | n %)
[isErrvalueg))— (signalerr 9 end)
[isNat(n)— (signalerr 9
[isErrvalueg))— (signalerr 9 end
C[while B do C] = he. fiXAf.As.casesB[B] e 9 of
isTr(t)— (t— (check¥ o (C[C] €) || return)(s)
[isErrvalug))— (signalerr 9 end)
CIK] =KI[K]
E: Expression= Environment> Store— Expressible-value
E[E.+E,] = MeAs.casesE[E] e of
isNat(n;)— (casesE[E,] e 9 of
isNat(n,)— inNat(n; plus np)
[isErrvalug))— inErrvalug)) end)
[isErrvalug))— inErrvalug() end
E[l] =heis.casesdccesser] e) of
isLocation(l)— inNat(access | 5
[isNat(n)— inNat(n)
[isErrvalug))— inErrvalug)) end
E[N] = Aeis. inNat(N[N])

B: Boolean-expr> Environment> Store— (Tr+ Errvalue) (omitted)

N: Numeral= Nat (omitted)

commands [¢] and [C,] are both evaluated in the context representeabyrhis point is
important, for [G] could be a block with local declarations. It would need its own local
environment to process its commands. Howe@iC,] retains its own copy ofe, so the
environments created withi€[C;] do not affectC[C,]'s version. (Of course, whatever
alterationsC[C 1] e makes upon the store are passedCfiC,]e.) This language feature is
calledstatic scoping.The context for a phrase in a statically scoped language is determined
solely by the textual position of the phrase. One of the benefits of static scoping is that any
identifier declared within a block may be referenced only by the commands within that block.
This makes the management of storage locations straightforward. So-dsiheaically
scopedanguages, whose contexts are not totally determined by textual position, will be stu-
died in a later section.

132 Languages with Contexts

The meaning of an expression supplied with an environment and store is an expressible
value. Error checking also occurs at the expression level, as an undeclared identifier might be
used in an expression.

A key feature of this language, as well as other strongly typed languages, is that environ-
ment processing can proceed independently of store processing. That is, the defjifion
can be simplified without the values of the initial base locati@nd the initial stores (see
Section 5.1.1 of chapter 5). The result is a smaller function expression that contains no
occurrences of environment arguments nor ofdhsesexpressions that check denotable and
expressible value tags. The simplifications correspond to the declaration and type-checking
actions that occur in a compiler.

The following example demonstrates this point. Since the value of the run-time store is
not known, we do no simplification on any operations from the algeBtaseandPoststore.
Expressions using these operations are “frozen”— their evaluation is delayed until run-time.
The static semantics analysis of a program is presented in Figure 7.3.

The diagrammatic form:

E:

represents the simplification of expressBto E: and its replacement in the larger expression,
giving (- - -E«- - +). Notice how the environment arguments distribute throughout the com-
mands and their subparts without interfering with the frozleeckAs. - - -) expression forms.

All Denotable-valuand Expressible-valuéabels are consumed by tlsasesexpressions. As
simplification proceeds, environment arguments disappear, variables map to their location
values, and constants reveal their natural number values. The final expression can be read
more easily if reverse function composition is usedf lef stand forg o f. Then the result is:

M. (As. return(update I(one plus twds))
I' (checKfix(M.As.
((access | pequals zere-
(As. returnupdaténext-locn) (access | ¥s)) ! (check}
[return
)s))
I (checKAs. return(update | one B))

The expression rightly resembles a series of machine code instructions, parameterized on
a store’s base addrekslin Chapter 10, we study the mapping of expressions such as this one
into object code for a real machine.

7.1 A Block-Structured Languagel33

Figure 7.3

Let Dg=constA=1
D, =varX
Co=C1;CC3
Cl = X:=A+2
C, = beginvarA;C, end
C3 =X:=A
C4 = while X=0do A:=X
P[beginDg;D4;Co end]
M. K[begin Dg;D1:Cq end](emptyenv)l
let this beg
CICol(DIDo;D1] e0)
D[D 1](D[constA=1]ey)
(updateenfA] in Nat(one ep)
let this bee;= (mapl)
D[var X] e
let (I,e)= (reserve-locngin - - -
(I, (map (next-locn)))
€
(updateenfX] in Location(l) e,)
€3
(checKC[C>:Cs] &;)) ° (CIX:=A+2]e;)

As.casesdccessenX] e3) of - - -end

inLocation(l)

134 Languages with Contexts

Figure 7.3 (continued)

caseskEJA +2]e;) of - - - end
inNat(one plus twd
return(update I(one plus twds)
(checKC[Ca] e3)) ° (C[begin var A; C, end] &3)
CIC4I(D[var A] &;)
(updateenfA] in Location(next-locn) e4)
53
C[while X=0 doA:=X] e
fix(Af. As.casesB[X =0]e5 s) of - - -end
inTr((access | sequals zerd

((access | yequals zere~
(checkj o (C[A: =X] &5) || return) s

As. return(updatgnext-locn) (access | k9)
C[X:=A] &3

As.return(update | one b

7.1.1 Stack-Managed Storage

The store of a block-structured language is used in a stack-like fashion— locations are bound
to identifiers sequentially usingextlocn,and a location bound to an identifier in a local block
is freed for re-use when the block is exited. The re-use of locations happens automatically due
to the equation foC[[C;C,]. Any locations bound to identifiers in [{J are reserved by the
environment built frome for C[C], but C[C,] re-uses the originag (and its original loca-
tion marker), effectively deallocating the locations.

Stack-based storage is a significant characteristic of block-structured programming
languages, and th8torealgebra deserves to possess mechanisms for stack-based allocation
and deallocation. Let's move the storage calculation mechanism over to the store algebra.

7.1.1 Stack-Managed Storagel35

Figure 7.4 presents one of many possible results.

The new store domain uses thenation— Storable-valugcomponent as the data space
of the stack, and théocation component indicates the amount of storage in use— it is the
“stack top marker.” Operationaccessandupdateverify that any reference to a storage loca-
tion is a valid one, occurring at an active location beneath the stack top. The purposes of
mark-locn and allocate-locn should be clear; the latter is the run-time version of the
environment’sreserve-locnoperation. Theleallocate-locnperation releases stack storage
from the stack top to the value indicated by its argument.

Freed from storage management, the environment domain takes the form
Environment |d— Denotable-valueThe operations are adjusted accordingly, and the opera-
tion reserve-locris dropped. (This is left as an easy exercise.) If the environment leaves the
task of storage calculation to the store operations, then processing of declarations requires the
store as well as the environment. The functionality of the valuation function for declarations
becomes:

D: Declaratiorn= Environment> Store— (Environmenk Poststorg
D[var I] = AeAs.let (, p)= (allocate-locn ¥

in ((updateenfl] in Location(l) €), p)
DD 1;D,] = Aeis.let (e, p)= (D[D 1] €9 in (checkD[D 5] e)(p)

where check (Store — (Environmenk Poststorg) — (Poststore — (Environment

Figure 7.4

IX'. Stack-based store
Domain Store= (Location— Storable-valugx Location
Operations

access Location— Store— (Storable-value Errvalue)
access Al.A(map top). | lessthan-locn top> inStorable-valuémap)
[inErrvalug)

update Location— Storable-value- Store— Poststore
update= Al.Av.A(map top). | lessthan-locn top> iNOK([I - v]map top)
[inErr(map top)
mark-locn Store— Location
mark-locn= A(map top). top

allocate-locn Store— Locationx Poststore
allocate-locn= A(map top). (top, iNOK(map next-locrftop)))

deallocate-locnsLocation— Store— Poststore
deallocate-locns Al.A(map top). (I lessthan-locn top
or (I equal-locn top— inOK(map |) [| inErr(map top)

136 Languages with Contexts

x Poststorg) behaves like its namesake in Figure 7.1. This version of declaration processing
makes the environment into a run-time object, for the binding of location values to identifiers
cannot be completed without the run-time store. Contrast this with the arrangement in Figure
7.2, where location binding is computed by the environment operagiserve-locnwhich
produced a result relative to an arbitrary base address. A solution for freeing the environment
from dependence upaallocate-locnis to provide it information about storage management
strategies, so that the necessary address calculations can be performed independently of the
value of the run-time store. This is left as an exercise.

TheK function manages the storage for the block:

K[begin D;C end] =AeAs.let] = mark-locn sin
let (&, p) = D[D] e sin

let pr= (checKC[C] &))(p)
in (checKdeallocate-locns))(pr)

Thedeallocate-locn@peration frees storage down to the level held by the store prior to block
entry, which is (nark-locn 3.

7.1.2 The Meanings of Identifiers

The notion of context can be even more subtle than we first imagined. Consider the Pascal
assignment statementXX+1. The meaning of X on the right-hand side of the assignment is
decidedly different from X’'s meaning on the left-hand side. Specifically, the “left-hand side
value” is a location value, while the “right-hand side value” is the storable value associated
with that location. Apparently the context problem for identifiers is found even at the primi-
tive command level.

One way out of this problem would be to introduce two environment arguments for the
semantic function for commands: a left-hand side one and a right-hand side one. This
arrangement is hardly natural; commands are the “sentences” of a program, and sentences
normally operate in a single context. Another option is to say that any variable identifier actu-
ally denotes a pair of values: a location value and a storable value. The respective values are
called the identifier'd.-valueand R-value. The L-value for a variable is kept in the environ-
ment, and the R-value is kept in the store. We introduce a valuation function
I: Id— Environment> Store— (Locationx Storable-valug In practice, thd function is split
into two semantic function&: Id — Environment— Location and R: Id — Environment
— Store— Storable-valuesuch that:

L[] = accessenj]
R[] = access accessen].

We restate the semantic equations using variables as:

ClI: =E] = heAs. returnupdatdL[I1]) (E[E]e9 9)
ElT =RI

7.1.2 The Meanings of Identifiers137

The definitions are a bit simplistic because they assume that all identifiers are variables. Con-
stant identifiers can be integrated into the scheme — a declaration sucbrest A=N] sug-
gestd [[A] e= inErrvalug)). (What should R[A] e 9 be?)

Yet another view to take is that the R-value of a variable identifier is a function of its L-
value. The “true meaning” of a variable is its L-value, and a “‘coercion” occurs when a vari-
able is used on the right-hand side of an assignment. This coercion is dalefitrencing.

We formalize this view as:

J: Id — Environment= Denotable-value
J[1] = Ae.(accesserfl] €)

ClI: =E] = heAs. returnupdatgJ[1] e) (E[E] e) s)
E[l] =Aeis. dereferenc@[l] €) s
wheredereferencelLocation— Store— Storable-value
dereference access

An identifier's meaning is just its denotable value. Those identifiers with locations as
their meanings (the variables) are dereferenced when an expressible value is needed. This is
the view that was taken in the previous sections.

The implicit use of dereferencing is so common in general purpose programming
languages that we take it for granted, despite the somewhat unorthodox appearance of com-
mands such as 3X+1 in FORTRAN. Systems-oriented programming languages such as
BCPL, Bliss, and C use an explicit dereferencing operator. For example, in BCPL expressible
values include locations, and the appropriate semantic equations are:

E[l] =AeAs. inLocation(J[1] €)

E[@E] = AeAs.casesE[E] e 9 of
isLocatior(l)— (dereferences)
l ---end

The @ symbol is the dereferencing operator. The meaning of X:=X+1 in BCPL is decidedly
different from that of X:=@X+1.

7.2 AN APPLICATIVE LANGUAGE

The next example language using environments is@licative language.An applicative
language contains no variables. All identifiers are constants and can be given attributes but
once, at their point of definition. Without variables, mechanisms such as assignment are
superfluous and are dropped. Arithmetic is an applicative language. Another example is the
minimal subset of LISP known as “pure LISP.” The function notation that we use to define
denotational definitions can also be termed an applicative language. Since an applicative
language has no variables, its semantics can be specified with&@ibra domain. The
environment holds the attributes associated with the identifiers.

The language that we study is defined in Figure 7.5. It is similar to pure LISP. A

138 Languages with Contexts

Figure 7.5

Abstract syntax:

EE€ Expression
A& Atomic-symbol
| € Identifier

E:=LETI=E, INE, | LAMBDA () E |E, E |
E, CONS B | HEADE | TAILE [NIL|1|A| (E)

Semantic algebras:

I. Atomic answer values
Domain a& Atom
Operations

(omitted)

Il. Identifiers
Domain i € Id= ldentifier
Operations
(usual)

I1l. Denotable values, functions, and lists
Domains d € Denotable-value (Function+ List+ Atomk Error)|
fe Function= Denotable-value>= Denotable-value
tE List= Denotable-valué
Error= Unit

IV. Expressible values
Domain x& Expressible-value Denotable-value

V. Environments
Domain e€ Environment |d— Denotable-value
Operations

accessenvld — Environment> Denotable-value
accesseny Ai.he. e(i)

updateenv Id— Denotable-value= Environment= Environment
updateen¥ Ai.AdAe.[i=d]e

Valuation functions:

E: Expressior= Environment= Expressible-value
E[LET I=E; IN E,] = Ae.E[E,](updateenfi] (E[E1]€) €)
E[LAMBDA (I) E] = Ae.inFunctionAd.E[E](updateenfi] d €)

7.2 An Applicative Language 139

Figure 7.5 (continued)

E[E. E>] = Ae.letx= (E[E1] €) in cases of

isFunctionf)— f(E[E>] €)

[l isList(t)— inError()

[isAtom(@)— inError() [isError() — inError() end
E[E; CONS E] = he.letx= (E[E,] €) in casex of

isFunction(f)— inError()

[isList(t)— inList(E[E,] e cons}

[isAtom@)— inError() | isError() — inError() end
E[HEAD E] = he.letx= (E[E] €) in casex of

isFunctionf)— inError()

[isList(t)— (nullt — inError() || (hd 1))

[isAtom(@— inError() [isError() — inError() end
E[TAIL E] = Ae.letx= (E[E] €) in casex of

isFunctionf)— inError()

[isList(t)— (nullt— inError() || inList(tl t))

[isAtom(@)— inError() [isError() — inError() end
E[NIL] =Ae.inList(nil)
E[l] = accessenj]
E[A] =Ae.inAtom(A[A])
EI(E)] = E[E]

A: Atomic-symbol— Atom (omitted)

program in the language is just an expression. An expression can be a LET definition; a
LAMBDA form (representing a function routine with parameter 1); a function application; a
list expression using CONS, HEAD, TAIL, or NIL; an identifier; or an atomic symbol. We
learn much about the language by examining its semantic domditem is a primitive
answer domain and its internal structure will not be considered. The language also contains a
domain of functions, which map denotable values to denotable values; a denotable value can
be a function, a list, or an atom. For the first time, we encounter a semantic domain defined in
terms of itself. By substitution, we see that:

Denotable-value ((Denotable-value> Denotable-valup+ Denotable-valug
+Atom+ Error)|

A solution to this mathematical puzzle exists, but to examine it now would distract us from the
study of environments, so the discussion is saved for Chapter 11. Perhaps you sensed that this

140 Languages with Contexts

semantic problem would arise when you read the abstract syntax. The syntax allows
LAMBDA forms to be arguments to other LAMBDA forms; a LAMBDA form can even
receive itself as an argument! It is only natural that the semantic domains have the ability to
mimic this self-applicative behavior, so recursive domain definitions result.

E determines the meaning of an expression with the aid of an environment. The meaning
of an expression is a denotable value. An atom, list, or even a function can be a legal
“answer.” The LET expression provides a definition mechanism for augmenting the environ-
ment and resembles the declaration construct in Figure 7.2. Again, static scoping is used.
Functions are created by the LAMBDA construction. A function body is evaluated in the con-
text that is active at the point of function definition, augmented by the binding of an actual
parameter to the binding identifier. This definition is also statically scoped.

7.2.1 Scoping Rules

The applicative language uses static scoping; that is, the context of a phrase is determined by
its physical position in the program. Consider this sample programqleina g be sample
atomic symbols):

LETF=a IN
LET F= LAMBDA (Z) F CONS Z IN
LET Z =& IN
F(Z CONS NIL)

The occurrence of the first F in the body of the function bound to the second F refers to the
atom @a— the function is not recursive. The meaning of the entire expression is the same as
(LAMBDA (Z) ag CONS Z) (a CONS NIL)'s, which equals @CONS (g CONS NIL))’s.

Figure 7.6 contains the derivation.

An alternative to static scoping @dynamic scopingwhere the context of a phrase is
determined by the place(s) in the program where the phrase’s value is required. The most gen-
eral form of dynamic scoping is macro definition and invocation. A definition LEE binds
identifier | to thetextE; E is not assigned a context until its value is needed. When I's
value is required, the context where | appears is used to acquire the text that is bound to it. |
is replaced by the text, and the text is evaluated in the existing context. Here is a small exam-
ple (the=> denotes an evaluation step):

LET X = a IN
LET Y = X CONS NIL IN
LETX =X CONS Y IN Y

= (X is bound to @)
LETY =X CONS NIL IN
LETX=XCONSYIN Y

Figure 7.6

7.2.2 Self-Application 141

Let Eg=LETF=aINE;
E, = LET F= LAMBDA (Z) F CONS Z IN E,
E, = LET Z = & IN F(Z CONS NIL)

E[Eol &
E[E1](updateenfF] (E[ao] &) &)

€

E[E,](updateenfF] (E[LAMBDA (Z) F CONS Z] &) &)

€
E[[F(Z CONS NIL)J(updateenfZ] (E[ai] &) &)

€3
let x= (E[F] &3) in casescof - - - end

E[LAMBDA (Z) F CONS Z] g,
= inFunctionAd. E[F CONS Z](updateen§Z] d e))

(Ad. - - -)(E[Z CONS NiL] &3)
E[[F CONS Z](updateenfZ] (E[Z CONS NiL]&3) €;)

€4

letx= (E[[Z] &,) in cases of - - -end

(accessenlZ] e4) = E[Z CONS NIL] e; = inList(inAton{a;) cons ni)

inList((E[F] e4) conginAtom(a;) cons ni))

(accesserliF] &) = (e4[F]) = (e1[F])
= (E[ao] &) = inAtom(ag)

inList(inAtorm(ag) cons(inAtom(a;) cons ni))

142 Languages with Contexts

= (Xis bound to g)
(Yis bound to X CONS NIL)
LETX=XCONSYIN Y

= (Xis bound to g)
(Y is bound to X CONS NIL)
(Xisboundto X CONSY)
Y

= (Xis bound to @)
(Yis bound to X CONS NIL)
(X'is bound to X CONS YY)
X CONS NIL

= (Xis bound to g)
(Y is bound to X CONS NIL)
(X'isbound to X CONSY)
(X CONS Y) CONS NIL

= (Xis bound to g)
(Y is bound to X CONS NIL)
(Xisboundto X CONSY)
(X CONS (X CONS NIL)) CONS NIL

=>...

and the evaluation unfolds forever.

This form of dynamic scoping can lead to evaluations that are counterintuitive. The ver-
sion of dynamic scoping found in LISP limits dynamic scoping just to LAMBDA forms. The
semantics of [LAMBDA (1) E] shows that the construct is evaluated within the context of its
application to an argument (and not within the context of its definition).

We use the new domain:

Function= Environment= Denotable-value> Denotable-value

and the equations:

E[LAMBDA (1) E] = Ae.inFunctionAe.Ad. E[E] (updateenfl] d e))
E[E, E;] = Ae.letx= (E[E] €) in casex of

isFunction(f) — (fe(E[E2] e))

[isList(t) — inError()

[isAtom(@) — inError()

[isError() — inError() end

7.2.2 Self-Application 143

The example in Figure 7.6 is redone using dynamic scoping in Figure 7.7.

The differences between the two forms of scoping become apparent from the point where
E[F(Z CONS NIL)] is evaluated with environmerdgs. The body bound to [F] evaluates
with environmenie; and note;. A reference to [F] in the body stands for the function bound
to the second [F] and not the atom bound to the first.

Since the context in which a phrase is evaluated is not associated with the phrase’s tex-
tual position in a program, dynamically scoped programs can be difficult to understand. The
inclusion of dynamic scoping in LISP is partly an historical accident. Newer applicative
languages, such as ML, HOPE, and Scheme, use static scoping.

7.2.2 Self-Application

The typeless character of the applicative language allows us to create programs that have
unusual evaluations. In particular, a LAMBDA expression can accept itself as an argument.
Here is an example: LETXLAMBDA (X) (X X) IN (X X). This program does nothing

more than apply the LAMBDA form bound to X to itself. For the semantics of Figure 7.5 and

a hypothetical environmeet:

E[LET X = LAMBDA (X) (X X) IN (X X)] &

= E[(X X)] e;, wheree; = (updateenfX] (E[LAMBDA (X) (X X)] &) &)
= E[LAMBDA (X) (X X)] & (E[X] €1)

= (M. E[(X X)](updateen§X] d e))(E[X] e1)

= E[[(X X)](updateenfX] (E[LAMBDA (X) (X X)] &) &)

= E[(X X)] &

The simplification led to an expression that is identical to the one that we had four lines ear-
lier. Further simplification leads back to the same expression over and over.

A couple of lessons are learned from this example. First, simplification on semantic
expressions is hot guaranteed to lead to a constant that is “the answer” or “true meaning” of
the original program. The above program lsasnemeaning in theDenotable-valueglomain,
but the meaning is unclear. The example points out once more that we are usitegianfor
representing meanings and the notation has shortcomings. These shortcomings are not pecu-
liar to this particular notation but exist in some inherent way in all such notations for
representing functions. The study of these limitations belongs to computability theory.

The second important point is that a circular derivation was produced without a recursive
definition. The operational properties of a recursive definition(f) are simulated by defining
a functionh(g)=a(g(g)) and lettingf=h(h). A good example of this trick is a version of the
factorial function:

f(p)= Ax. if x=0 then1 elsexx((p(p))(x-1))
fac= (f)

The recursiveness in the applicative language stems from the recursive nature of the
Denotable-valuedomain. Its elements are in some fundamental way ‘“recursive” or

144 Languages with Contexts

Figure 7.7

E[Eol &

(E[F(Z CONS NIL)]es)

wheree; = (updateenfZ] (Efa;] &) &)
& = (updateenfF] (E[LAMBDA (Z) F CONS Z] &) &)
e, = (updateenfF] (E[ao] &)).
let x= (E[F] &3) in casescof - - - end
accesseniF] e;
E[LAMBDA (Z) F CONS Z] e
inFunctionAe.Ad.E[F CONS Z] (updateen§Z] d e))
(Med. - -) e3 (E[Z CONS NiL] e3)
E[[F CONS Z](updateenfZ] (E[Z CONS NIL] &3) €3)
€4
let x= (E[[Z] &4) in casex of - - -end

accesseniZ] e,
= E[Z CONS NiL] e;

= inList(inAtom(a;) cons ni)
inList(E[[F] es cons(inAtorm(a;) cons ni))

accesserniF] e,

= E[LAMBDA (Z) F CONS Z] &

= inFunctionAe.Ad. - - +)

inList(inFunctionAe..Ad. - - -) consinAtom(a;) cons ni)

7.2.3 Recursive Definitions 145

“infinite.” The nature of an element in a recursively defined semantic domain is more
difficult to understand than the recursive specification of an element in a nonrecursive domain.
Chapter 11 examines this question in detail.

Finally, it is conceivable that the meaning of the example program|/-is the
simplification certainly suggests that no semantic information is contained in the program. In
fact, this is the case, but froveit so is nontrivial. Any such proof needs knowledge of the
method used to build the domain that satisfies the recursive domain specification.

7.2.3 Recursive Definitions

Now we add a mechanism for defining recursive LAMBDA forms and give it a simple seman-
tics with thefix operation. We add two new clauses to the abstract syntax for expressions:

E:=...|LETRECI=E; INE; | IFNULL E; THENE, ELSE |

The LETREC clause differs from the LET clause because all occurrences of identifieg | in E
refer to the | being declared. The IF clause is an expression conditional for lists, which will be
used to define useful recursive functions on lists.

First, the semantics of the conditional construct is:

E[IFNULL E; THEN E ELSE E] = Ae.letx= (E[E1] €) in casex of
isFunctionf) — inError()
[isList(t) — ((null t) — (E[E2] €) [(E[Es]€))
[| isAtom(@) — inError()
[isError() — inError() end

The semantics of the LETREC expression requires a recursively defindidbnment

E[LETREC I=E; IN E5] = Ae.E[Es] &
wheree = updateenfl] (E[E] &) e

E[E,] requires an environment that maps [I] EfE] e for somee. But to support recursive
invocations,e must contain the mapping of [I] t&[E,]e as well. Hence= is defined in
terms of itself. This situation is formally resolved with least fixed point semantics. We write:

E[LETREC I=E; IN E;] = Ae.E[E,](fix(re. updateenfl] (E[E] e) €))

The functionalG= (\e. updateenfi] (E[E.]e) €) : Environment— Environmentgenerates
the family of subfunctions approximating the recursive environment. This family is:

GO=Mi |
G! = updateenfii] (E[E,](G)) e
= updateenfl] (E[E4] (M.) e
G? = updateenfil] (E[E,](GY) e
= updateenfl] (E[E;] (updateenfii] (E[E{I(Ai. |)) €)) e

146 Languages with Contexts

G *! = updateen(E[E;](G')) e

Each subenvironmer@' ** produces a better-defined meaning for [I] than its predecessor
and acts likee otherwise. A subenvironmei@ *! is able to handlé recursive references to
[1] in [E 1] before becoming exhausted and producingThe limit of the chain of suben-
vironments is an environment that can handle an unlimited number of recursive references.
Rest assured that you don’t need to remember all these details to define and use recursive
environments. We give the details to demonstrate that fixed point theory has intuitive and
practical applications.

Now consider this example:

LETREC F= LAMBDA (X) IFNULL X THEN NIL ELSE a , CONS F(TAIL X)
IN F(a; CONS 3 CONS NIL)

Function F transforms a list argument into a list of the same length containing gakpms.

The value of the above expression is the same@E@NS g CONS NIL). Figure 7.8 shows

the simplification. Referencesto [F] imEand B are resolved by the recursive environment.
Now that we have seen several examples, comments about the LET construct are in

order. The purpose of LET is similar to that of the constant declaration construct in Figure

7.2. InfactE[LET | = E; IN E;] equalsE[[E1/I]1E>], where [[E;/1]1E,] denotes the phy-

sical substitution of expression [[for all free occurrences of [I] in [&], with renaming of

the identifiers in [B] as needed. (The proof of this claim is left as an exercise.) As an exam-

ple:

LET X =g IN
LETY =X CONS NIL IN
(HEAD Y) CONS X CONS NIL
rewrites to the simpler program:
LETY =a CONS NIL IN
(HEAD Y) CONS g CONS NIL
which rewrites to:
(HEAD (ag CONS NIL)) CONS g CONS NIL
which rewrites to:
ag CONS g CONS NIL

These rewriting steps preserve the semantics of the original program. The rewritings are a
form of computing, just like the computing done on an arithmetic expression.

The LETREC construct also possesses a substitution principle: for [LETREC |
= E; IN E5], all free occurrences of [I] in [E] are replaced by [E], andto complete the
substitution, any free occurrences of [I] in the resulting expression are also replaced (until
they are completely eliminated). Of course, the number of substitutions is unbounded:
LETREC I= a(l) IN p(I) writes to f(a(l)), then top(a(a(l))), then top(a(a(a(l)))) - - -, and
so on. This is expected, since the environment that models the recursidixdueagenerate a
similar chain of semantic values. Complete substitution isn’t feasible for producing answers in
a finite amount of time, so the substitutions must be perfomed more cautiously: occurrences of

7.3 Compound Data Structures147

Figure 7.8

Let Eg=LAMBDA (X)E;
E, = IFNULL X THEN NIL ELSE a, CONS F(TAIL X)
E, = F(a CONS g CONS NIL).

E[LETRECF = IN E,] &

E[E.]e

wheree; = fix G
G = (fix(\e.updatdF] (E[Eo] &) e))

E[F(a; CONS @ CONS NIL)]e;

let x= (E[F](fixG)) in casexof - - - end
accessenF] (fixG)
= (fix GF]

- G(fix G)[F]
= (updateenf] (E[Eo](fixG)) &) [FI

= E[LAMBDA (X) E ;](fixG)
= inFunctionAd. E[E](updateen§X] de))
E[E](updateen§X] (E[a; CONS @ CONS NIL]e;) &)
€
E[IFNULL X THEN NIL ELSE ag CONS F(TAIL X)]e,
letx= (E[X] &) in casesof - - -end
E[a; CONS a CONS NIL]e;
inList(inAtom(a;) cons: - -)
null(inAtom(a;) cons: - -) — E[NIL] & [| E[ag CONS F(TAIL X)]e,

E[ao CONS F(TAIL X)]e;

148 Languages with Contexts

Figure 7.8 (continued)

let x= (E[F(TAIL X)] &) in casesof - - - end
let x= (E[F] &) in casescof - - - end
accesser{F] e, = e,[F] = (fix G)[FI
=”G.(fix G)IF] = inFunctior(\d.E[E,] - -)
E[E 1](updateenfX] (E[TAIL X] &) &)

inList(inAtonm(ag) cons nil)

inList(E[[ag] & cons(inAtom(ay) cons ni))

inList(inAtom(ag) consinAton(ag) cons nil)

[11in [E ,] are replaced by [E] only when absolutely needed to complete the simplification
of [E>]. This strategy matches the conventional approach for evaluating calls of recursively
defined functions.

These examples suggest that computation upon applicative programs is just substitution.
Since the environment is tied to the semantics of substitution, it is directly involved in the exe-
cution and is a run-time structure in an implementation of the applicative language. The pre-
execution analysis seen in Section 7.1 will not eliminate occurrences of environment argu-
ments in the denotations of applicative programs. LikeStmealgebra of Figure 7.1, these
expressions are “frozen” until run-time.

7.3 COMPOUND DATA STRUCTURES

Both imperative and applicative languages use compound data structures— values that can be
structurally decomposed into other values. The applicative language used lists, which are
compound structures built with CONS and NIL and decomposed with HEAD and TAIL.
Another favorite compound structure for applicative languages is the tuple, which is built with
a tupling constructor and decomposed with indexing operations. The semantics of these
objects is straightforward: finite lists @& elements belong to th&" domain, and tuples oA,
B, C, ... elements are members of the product spacBx Cx - - -.

The problems with modelling compound structures increase with imperative languages,
as variable forms of the objects exist, and an object’'s subcomponents can be altered with
assignment. For this reason, we devote this section to studying several versions of array

7.3 Compound Data Structures149

variables.

What is an array? We say that it is a collection of homogeneous objects indexed by a set
of scalar values. Bynomogeneoysve mean that all of the components have the same struc-
ture. This is not absolutely necessary; languages such as SNOBOL4 allow array elements’
structures to differ. But homogeneity makes the allocation of storage and type-checking easier
to perform. Consequently, compiler-oriented languages insist on homogeneous arrays so that
these tasks can be performed by the compiler. The disassembly operation on arrays is index-
ing. The indexing operation takes an array and a value from the index set as arguments. The
index set isscalar, that is, a primitive domain with relational and arithmetic-like operations,
so that arithmetic-like expressions represent index values for the indexing operation. Nor-
mally, the index set is restricted by lower and upper bounds.

The first version of array that we study is a linear vector of values. Let some primitive
domainIndex be the index set; assume that it has associated relational openatsstizan,
greaterthanandequals. The array domain is:

1DArray= (Index— Location) x Lower-boundk Upper-bound
whereLower-bound- Upper-bound Index

The first component of an array maps indexes to the locations that contain the storable values
associated with the array. The second and third components are the lower and upper bounds
allowed on indexes to the array. You are left with the exercise of defining the indexing opera-
tion.

The situation becomes more interesting when multidimensional arrays are admitted.
Languages such as ALGOLG60 allow arrays to contain other arrays as components. For exam-
ple, a three-dimensional array is a vector whose components are two-dimensional arrays. The
hierarchy of multidimensional arrays is defined as an infinite sum. For simplicity, assume the
index set for each dimension of indexing is the same dornmaiex. We define:

1DArray= (Index— Location x Indexx Index
and for eacn= 1:

(n+1)DArray= (Index—= nDArray) x Indexx Index
so that the domain of multidimensional arrays is:

ac MDArray= Y mDArray
m=1
= ((Index— Location) x Indexx IndeX)
+ ((Index— ((Index— Location x Indexx IndeX) x Indexx Index)
+ ((Index— ((Index— ((Index— Location) x Indexx IndeX)) x Index
x IndeX) x Indexx Index)
PR

The definition says that a one-dimensional array maps indexes to locations, a two-dimensional
array maps indexes to one-dimensional arrays, and so on. a&MDArray has the form
inkDArray(map lower, uppel) for somek= 1, saying that is ak-dimensional array.

The indexing operation for multidimensional arrays is:

150 Languages with Contexts

access-array Index— MDArray— (Location+ MDArray+ Errvalue)
access-array Ai.Ar. cases of

islDArray(a)—index a i

[is2DArray(a)— index a i

[iskDArray(a)— index a i
.. .end

where, for allm= 1, index, abbreviates the expression:

Mmap lower, uppe).Ai. (i lessthan lowey
or (i greaterthan upper— inErrvalug) | minjec{map(i))

wheremlinjectabbreviates the expressions:

linject Al. inLocatior(l)

(n+1)Inject= Aa. inMDArray(innDArray(a))

Theaccess-arraypperation is represented by an infinite function expression. But, by using the
pair representation of disjoint union elements, the operation is convertible to a finite, comput-
able format. The operation performs a one-level indexing upon an arr@gurning another
array if a has more than one dimension. We definaipdate-arrayoperation; the store-based
operationupdateis used in combination with thaccess-arrayoperation to complete an
assignment to a location in an array.

Unfortunately, the straightforward model just seen is clumsy to use in practice, as realis-
tic programming languages allow arrays to be built from a variety of components, such as
numbers, record structures, sets, and so on. A nested array could be an array of records con-
taining arrays. Here is a Pascal-like syntax for such a system of data type declarations:

Te Type-structure

S& Subscript

T ::=nat | bool | array [N;..N,] of T | record D end
D::=Dy;Dy |var T

C:=...|[Sl=E]|...

E:x=...l[S]]...

S:=E|ES

We provide a semantics for this type system. First, we expand#metable-value
domain to read:

Denotable-value (Natlocn+ Boollocr+ Array+ Record- Errvalue),
wherel € Natlocn= Boollocn= Location
a€ Array= (Nat— Denotable-valupx Natx Nat
r € Record= Environment |d— Denotable-value

7.3 Compound Data Structures151

Each component in the domain corresponds to a type structure. The recursiveness in the syn-
tax definition motivates the recursiveness of the semantic domain.

The valuation function for type structures maps a type structure expression to storage
allocation actions. Th&torealgebra of Figure 7.4 is used with tReststorealgebra of Figure
7.1 in the equations that follow.

T: Type-structure= Store— (Denotable-valug Poststorg
T[nat] = As.let (I,p) = (allocate-locn $in (inNatlocr(l), p)
T[bool] = As.let (I,p) = (allocate-locn $in (inBoollocn(l), p)
T[array [N1..N,] of T] = As.letn;=N[N 1] in let n,=N[N5]
in n, greaterthann, — (inErrvalug(), (signalerr g)
[get-storagen; (empty-arrayp n,) s
where

get-storage Nat— Array— Store— (Denotable-value Poststorg
get-storage- An.Aa.As. n greaterthan n— (inArray(a), return 9
llet(d, p)=T[T]s
in (checKget-storagén plus ong (augment-array n d g)(p)
and

augment-array Nat— Denotable-value> Array— Array
augment-array- AnAdA(map lower, upped. ([n— d]map lower, uppel)
empty-array Nat— Nat— Array

empty-array= An; . Ano.((An. inErrvalug))), ny, ny)

T[[record D end] = As.let (g, p) = (D[D] emptyenv)ksin (inRecorde), p)

The heart of the strategy for creating an array valugeisstoragewhich iterates from the
lower bound of the array to the upper bound, allocating the proper amount of storage for a
component at each iteration. The component is inserted into the array lbydhneent-array
operation.

A declaration activates the storage allocation strategy specificed by its type structure:

D: Declaration— Environment> Store— (Environmenk Poststore
DD 1;D,] = heis.let (e, p)= (D[D 1] €9 in (checKD[D] e))(p)
Dfvar I:'T] = heAs.let (d, p)= T[T] sin ((updateenfi] d e), p)

Now assume that the operatioaccess-array Nat— Array— Denotable-valuehas been
defined. (This is left as an easy exercise.) Array indexing is defined in the semantic equations
for subscripts:

S: Subscript= Array— Environment= Store— Denotable-value
S[E] = haels.casesE[E] e of

152 Languages with Contexts

[isNat(n)— access-array n a
-+ -end
SJE, S] =haleis.casesE[E] e9 of

[isNat(n) — (casesdccess-array n pof

[isArray(a)) = SJS]lare s
-end

A version of first order array assignment is:

C[I[S]: =E] =AeAs.casesdccessenl] e) of
[isArray(a) — (cases f[S]a e 9 of
[isNatlocn(l)— (casesE[E] e 9 of

[isNat(n) — return(update linNat(n) s)
-+ end)
-+ -end)
~end

As usual, a large amount of type-checking is required to complete the assignment, and an extra
check ensures that the assignment is first order; that is, the left-hand side [I[S]] denotes a
location and not an array.

The final variant of array assignment we examine is the most general. The array is
heterogeneous (its components can be elements of different structures), its dimensions and
index ranges can change during execution, and by using a recursive definition, it can possess
itself as an element. Variants on this style of array are found in late binding languages such as
APL, SNOBOL4, and TEMPO, where pre-execution analysis of arrays yields little.

The domain of heterogeneous arrays is the domdaiay just defined in the previous
example, but the operations upon the domain are relaxed to allow more freedom. Since an
array is a denotable value, the usual methods for accessing and updating a heterogeneous array
are generalized to methods for handling all kinds of denotable values. A first order denotable
value is just a degenerate array. Tdeeess-valueperation fetches a component of a denot-
able value. It receives as its first argument a list of indexes that indicates the path taken to find
the component.

access-valueNat' — Denotable-value> Denotable-value
access-value hnlistAd.

null nlist—d

[| (cased of

7.3 Compound Data Structures153

isNatlocr(l)— inErrvalug)

[isArray(map lower, uppe)—
let n= hd nlistin
(n lessthan lowexor (n greaterthan upper— inErrvalug)
[I (access-valu@l nlist) (map n)
-+ -end)

The operation searches through the structure of its denotable value argument until the
component is found. An empty index list signifies that the search has ended. A nonempty list
means that the search can continue if the value is an array. If so, the array is indexed at posi-
tion (hd nlisf) and the search continues on the indexed component.

The updating operation follows a similar strategy, but care must be taken to preserve the
outer structure of an array while the search continues within its subparts. The arquement
valueis inserted into the arrasurrent-valueat indexnlist:

update-value Nat* — Denotable-value> Denotable-value> Denotable-value
update-value AnlistAnew-valué.current-value.
null nlist— new-value
[| (casescurrent-valueof
isNatlocrn(l)— inErrvalug()

[isArray(magp lower, uppe)—
let n= hd nlistin
let new-lower= (nlessthan lower= n|] lower) in
let new-uppek (n greaterthan upper> n|| uppe
in augment-array r{update-valugtl nlist) new-value(map r))
(map new-lower new-uppey

[isErrvalug)) — augment-array riupdate-valuétl nlist) new-value
inErrvalug))) (empty-array n i
-+ -end)
where
augment-array Nat— Denotable-value= Array— Denotable-value
augment-arrayin.id.A(map lower, uppel.inArray([i d]map lower, uppel)

If an index list causes a search deeper into an array structure than what exists, the
“isErrvalug)) — - - -” clause creates another dimension to accommodate the index list. Thus
an array can grow extra dimensions. If an index from the index list falls outside of an array’s
bounds, the “ié&rray(- - -)— - - - clause expands the arrays’s bounds to accommodate the
index. Thus an array can change its bounds. The outer structure of a searched array is
preserved by thaugment-arrayoperation, which inserts the altered component back into the

154 Languages with Contexts

structure of the indexed array. Note thgidate-valuduilds a new denotable value; it does not
alter the store. A separate dereferencing step is necessary to cause conventional assignment.
The exercises continue the treatment of this and other kinds of array.

SUGGESTED READINGS

Semantics of block structure: Henhapl & Jones 1982; Landin 1965; Meyer 1983; Mosses
1974; Oles 1985; Reynolds 1981; Strachey 1968

Semantics of applicative languages:Abelson & Sussman 1985; Gordon 1973, 1975;
Muchnick & Pleban 1982; Reynolds 1970; Steele & Sussman 1978

Semantics of compound data structures:Abelson & Sussman 1985; Andrews & Henhapl
1982; Gordon 1979; Jones & Muchnick 1978; Tennent 1977

EXERCISES

1. a. Let the domaihocationbe Nat. (Thus,first-locn= zerg next-locn= (Al. | plus ong,
etc.) Using the strategy ofiot simplifying away occurrences adccess, update,
check,or return, simplify P[beginvarA; A:=2;beginvarB; B:=A+1endend] as
far as possible.

b. Let the result of part a be callgdbject-code.Do one step of simplification to the
expressiorDbject-codézerg.

c. Let the result of part b be calledoaded-object-code.Simplify the expression
Loaded-object-codaewstorgto a post-store value.

2. Extend the language in Figure 7.2 to include declarations of variables of Boolean type;
that is:

D:= ---|boolvarl
and expressions of boolean type:
E:= - |true|-E

Adjust the semantic algebras and the semantic equations to accommodate the extensions.

3. Augment the language of Figure 7.2 to include procedures:

D:= ---|procl=C
and procedure invocations:
Cu= - |calll

Now augment th&enotable-valuelomain with the summan@roc = Store— Poststore
to accommodate procedures.

a. If the semantics of procedure definition is writte®[procl=C] =
Ae.(updateenyl] in Proc(C[C] €) €), write the semantic equation fo€[calll].

Exercises 155

What kind of scoping is used?

b. Say that the domaiRroc is changed to bé&roc = Environment— Store — Post-
storg. Write the semantic equations for procedure definition and invocation. What
kind of scoping is used?

4. a. For the semantics of Figure 7.2, show that there exist identifiers | and J and a com-
mand C such tha[begin varl; var J; Cend] = B[begin varJ;var I; C end].
b. Revise the language’s semantics so that for all identifiers | and J and command C, the
above inequality becomes an equality. Using structural induction, prove this.
c. Does the semantics you defined in part b support the equality
B[beginvarl;l:=l end] = return?

5. a. Define the semantics of the ALGOL&D-loop.
b. Define the semantics of the Pasfml-loop. (Recall that the loop index may not be
altered within the loop’s body.)

6. Itis well known that the environment object in Figure 7.2 can be implemented as a single
global stack. Where is the stack concept found in the semantic equations?

7. The semantics in Figure 7.2 is somewhat simple minded in that the block
[beginvarA; constA=0; Cend] has a nonerroneous denotation.

a. Whatis [A]'s denotation in [C]?
b. Adjust the semantics of declarations so that redeclaration of identifiers in a block pro-
duces an error denotation for the block.

8. Use structural induction to prove that the semantics in Figure 7.2 is constructed so that if
any command in a program maps a store to an erroneous post-store, then the denotation
of the entire program is exactly that erroneous post-store.

9. a. Add to the language of Figure 7.2 the declaratiear [:=E]. What problems arise in
integrating the new construct into the existing valuation funcbdior declarations?
b. Attempt to handle the problems noted in part a by using a new declaration valuation
function:

D: Declaration— Environment= (Store— Poststorg
— (Environmenk (Store— Poststorg)
B[beginD; Cend] = Ae.let (e,)= D[D] ereturnin ((checkC[C] &) c)

Write the semantic equations fBf[D 1;D,] and D[var I:=E] in the new format.

10. Make the needed adjustments so that the stack-based store model of Figure 7.4 can be
used with the semantics of Figure 7.2.

11. A design deficiency of the language in Figure 7.2 is its delayed reporting of errors. For
example, a denotable value error occurs in the assignmesAJR] when [A] is not

156 Languages with Contexts

12.

13.

14.

15.

16.

17.

previously declared. The error is only reported when the run-time store is mapped to an
erroneous post-store. The error reporting need not be delayed until run-time: consider
the valuation function C:Command- Environment> Compiled-code where
Compiled-code (Store— Poststorg+ Error-message Rewrite the semantics of Figure

7.2 using the new form o€ so that an expressible value or denotable value error in a
command leads to darror-messagelenotation.

Extend the language of Figure 7.2 with pointers. In particular, set

Denotable-value Natlocr+ Ptrlocn+ Nat+ Errvalue

whereNatlocn= Location(locations that hold numbers)
Ptrlocn= Location(locations that hold pointers)
Errvalue= Unit.

Augment the syntax of the language and give the semantics of pointer declaration, dere-
ferencing, assignment, and dynamic storage allocation. How does the integration of
pointers into the language change the stack-based storage model?

Augment the file editor language of Figure 5.4 with environments by introducing the
notion ofwindowinto the editor. A user of the file editor can move from one window to
another and be able to manipulate more than one file concurrently during a session.

Give an example of a programming language whose notion of R-value for an identifier is
not a function of the identifier's L-value.

Using the semantic definition of Figure 7.5, determine the denotations of the following
expressions:

a. [LETN=gINLETN=NCONSNILIN TAILN]
b. [LETG=LAMBDA (X)X INLETG =LAMBDA(Y)(GY)IN (Gao)]
c. [LETF=LAMBDA(X)(XX)INLETG =(FF)IN a]

Redo parts a through c using the LISP-style dynamic scoping semantics of Section 7.2.1.

Using structural induction, prove the following claim for the semantics of Figure 7.5: for
all 1€ Identifier, &, E;€ ExpressionE[LET | =E; INE,] = E[[E{/I]E>].

a. Using the semantics of the LETREC construct in Section 7.2.3, determine the denota-
tions of the following examples:

i. [LETREC APPEND=LAMBDA (L1) LAMBDA (L2)
IFNULL L1 THEN L2 ELSE (HEAD L1) CONS (APPEND
(TAIL L1) L2) IN APPEND (a; CONS NIL) (8; CONS NIL)]
i. [LETRECL =aoCONSL INHEADL]
iii. [LETREC L = HEAD L IN L]

b. Reformulate the semantics of the language so that a defined denotation for part i
above is produced. Does the new semantics practice “lazy evaluation”?

18.

19.

20.

21.

22.

23.

24.

25.

26.

Exercises 157

In LISP, a denotable value may be CONSed to any other denotable value (not just a list),
producing adotted pair. For example, [ACONS (LAMBDA (I)1)] is a dotted pair.
Reformulate the semantics in Figure 7.5 to allow dotted pairs. Redo the denotations of
the programs in exercises 15 and 17.

Formulate a semantics for the applicative language of Section 7.2 that uses macro
substitution-style dynamic scoping.

Define the appropriate construction and destruction constructs for the record structure
defined in Section 7.3. Note that the denotation of a record is a “little environment.”
Why does this make a block construct such as the Pasithl statement especially
appropriate? Define the semantics afith-like block statement.

a. Integrate the domain of one-dimensional arddyArray into the language of Figure
7.2. Define the corresponding assembly and disassembly operations and show the
denotations of several example programs using the arrays.

b. Repeat part a with the domain of multidimensional ariiArray.

c. Repeat part a with the Pascal-like type system and domain of &res

After completing Exercise 21, revise your answers to handle arrays whose bounds are set
by expressions calculated at runtime, e.g., for part ¢ above use: T:-:u= |
array [E;..E;] of T

After completing Exercise 21, adjust the semantics of the assignment statermEijtsp:
that:

a. If[I] is an array denotable value ang&[[E] e 9 is an expressible value from the same
domain as the array’s components, then a cop¥HE] e 9 is assigned to each of the
array's components;

b. If [I] is an array denotable value and&E[E] e9 is an array expressible value of
“equivalent type,” then the right-hand side value is bound to the left-hand side value.

Rewrite the valuation function for type structures so that it use€theronmentand
Storealgebras of Figure 7.1; that iF,: Type-structure= Environment= (Denotable-
valuex Environmen), and the valuation function for declarations reverts to the
Declaration— Environment= Environmentof Figure 7.2. Which of the two versions of

T andD more closely describes type processing in a Pascal compiler? In a Pascal inter-
preter? Which version of do you prefer?

Consider the domain of one-dimensional arrays; the denotations of the arrays might be
placed in the environment (that is, an array is a denotable value) or the store (an array is a
storable value). Show the domain algebras and semantic equations for both treatments of
one-dimensional arrays. Comment on the advantages and disadvantages of each treat-
ment with respect to understandability and implementability.

In FORTRAN, an array is treated as a linear allocation of storage locations; the lower

158 Languages with Contexts

27.

28.

29.

bound on an array is alwayene Define the domain of one dimensional FORTRAN
arrays to bd_ocationx Nat (that is, the location of the first element in the array and the
upper bound of the array). Show the corresponding operations for allocating storage for
an array, indexing, and updating an array.

Strachey claimed that the essential characteristics of a language are delineated by its
Denotable-valugExpressible-valugandStorable-valuelomains.

a. Give examples of programming languages such that:

i. Every expressible value is storable but is not necessarily denotable; every storable
value is expressible but is not necessarily denotable; a denotable value is not
necessarily expressible or storable.

ii. Every denotable value is expressible and storable; every storable value is expres-
sible and denotable; an expressible value is not necessarily denotable or storable.

iii. Every denotable value is expressible and storable; every expressible value is
denotable and storable; every storable value is denotable and expressible.

b. Repeat part a withExpressible-value= (Nat + Tr + Location + Expressible-
valué")l; with Expressible-value ((Id — Expressible-value+ Naf), .

c. Pick your favorite general purpose programming language and list its denotable,
expressible, and storable value domains. What limitations of the language become
immediately obvious from the domains’ definitions? What limitations raseobvi-
ous?

Language design is often a process of consolidation, that is, the integration of desirable
features from other languages into a new language. Here is a simple example. Say that
you wish to integrate the notion of imperative updating, embodied in the language in Fig-
ure 7.2, with the notion of value-returning construct, found in the language of Figure 7.5.
That is, you desire an imperative language in which every syntactic construct has an asso-
ciated expressible value (see ALGOLG68 or full LISP).

a. Design such a language and give its denotational semantics. Does the language’s
syntax look more like the language in Figure 7.2 or 7.5?

b. Repeat part a so that the new language appears more like the other figure (7.5 or 7.2)
than the language in part a did. Comment on how the characteristics of the two
languages were influenced by your views of the languages’ syntax definitions.

Attempt this exercise once again by:

c. Integrating an imperative-style data structure, the array, with an expression-based,
applicative notation like that of Figure 7.5.

d. Integrating an applicative-style list structure with a command-based, imperative nota-
tion like that of Figure 7.2.

The function notation used for denotational semantics definitions has its limitations, and
one of them is its inability to simply express the Pascal-style hierarchy of data-type. If
you were asked to define an imperative programming language with simple and

Exercises 159

compound data-types, and you knew nothing of the ALGOL/Pascal tradition, what kinds
of data-types would you be led to develop if you used denotational semantics as a design
tool? What pragmatic advantages and disadvantages do you see in this approach?

Chapter 8

bslir Ctl%)o " Correspondence, and

The title of this chapter refers to three language design principles proposed by Tennent. We
also study a fourth principleparameterization. Many important language constructs are
derived from the principles: subroutines, parameters, block-structuring constructs, and encap-
sulation mechanisms. Denotational semantics is a useful tool for analyzing the design princi-
ples and the constructs that they derive. The language in Figure 8.1 is used as a starting point.
We apply each of the principles to the language and study the results.

Figure 8.1

Abstract syntax:

P< Program

D& Declaration

TeE Type-structure
Ce Command

EE Expression

Le ldentifier-L-value
S& Subscript

| € Identifier

N& Numeral

=C.

:=Dq;Dy |var 1T

= nat|array [N1..N,] of T | record D end
=C;,C, | Li=E |beginD;Cend| - - -
=EAE [TISIN] -

2=11S

=[E]|.l|[E]S|.IS

wrmoOo-0 7T

160

8.1 Abstraction 161

8.1 ABSTRACTION

The first design principle is the principle of abstraction. Programmers sometimes use the term
abstractionfor a specification that hides some irrelevant computational details. In Chapter 3
we used the term to describe a function expression of famM). The usage is appropriate,

for the expression specifies a function, hiding the details regarding the x¢hae is used in

M. We also gave abstractions names, esquare= (An. ntimes). The name enhances the
abstraction’s worth, for we can refer to the abstraction by mentioning its name, e.g.,
squargtwo).

Most programming languages support the creation of named expressions; a Pascal pro-
cedure is an abstraction of a command. We execute the command by mentioning its name.
Both adefinitionmechanism and ainvocationmechanism are necessary. Tennent coined the
noun abstractto describe a named expression that is invoked by mentioning its name. An
abstract has bothmameand abody. If its body is an expression from a syntax domain B, the
abstract can be invoked by using its name any place in a program where a B-expression is syn-
tactically legal.

The principle of abstractionstates that any syntax domain of a language may have
definition and invocation mechanisms for abstracts.

A Pascal procedure is an example af@mmand abstractWe might also create expres-
sion abstracts, declaration abstracts, type abstracts, and so ounlefiee]=V] be an abstract.

[1] is the abstract's name and [V] is its body. The denotable value of [IViE/]. If V[V]

is a function denotation, then are the arguments to the function provided at the point of
definition of the abstract or at the point of its invocation? This is an important question and
we study its answer through an example.

We augment the language in Figure 8.1 with definition and invocation mechanisms for
command abstracts, which we cptbcedures.The definition mechanism is added to the BNF
rule for declarations:

D ::= Dy;D, |varl:T | proc1=C
and the invocation mechanism appears in the rule for commands:
C:=C;;C, | L:i=E |beginD;Cend]|] - -

Recall that the valuation function used in Chapter 7 for commands has functionality
C: Command- Environment> Store—> Poststore. The denotation of the abstract’s body can
be any of the following:

1. C[C]: Environment> Store— Poststore: the environment and store that are used with
the body are the ones that are active at the point of invocation. This corresponds to
dynamic scoping.

2. (C[C]e): Store— Poststore: the environment active at the point of definition is bound
to the body, and the store that is used is the one active at the point of invocation. This
corresponds tetatic scoping.

3. (C[C]e9€E Poststore: the procedure is completely evaluated at the point of definition,
and [I] is bound to a constarfPoststore value. This option is unknown in existing
languages for command abstracts.

162 Abstraction, Correspondence, and Qualification

These three options list the possildeoping mechanism®r command abstracts. For
now, let us choose option 2 and define the semantic domain of procedures to be
Proc= Store— Poststore. The denotations of procedure identifiers come ffroc:

Denotable-value Natlocn+ Array+ Record- Proc

The semantic equations for procedure definition and invocation are:

D[proc I=C] = heAs.((updateenfi] in Proc(C[C] €) €), (return 9)
C[I] = AeAs.casesdccessernl] e) of
isNatlocn(l) — (signalerr §

[isProcq)—(q9 end

(Recall thatD: Declaration— Environment> Store— (Environmenk Poststorg.) Since we
chose static scopingC{C] €) is bound to [I] in the environment, and the store is supplied at
invocation-time. The definitions of the other two options are left as exercises.

Similar issues arise for expression abstrafttac¢tiong. For:

D:=---|fcnl=E
E:::E1+E2| ||

an ALGOLG68-like constant definition results when the environment and store are bound at the
point of definition. If just the environment is bound at the point of definition, a FORTRAN-
style function results. If neither are bound at the point of definition, a text macro definition
results.

An interesting hybrid of procedure and function is thumction procedurewhich is a
command abstract that is invoked by an Expression-typed identifier. This construct is found
in Pascal. The function procedure must return an expressible value as its result. A possible
syntax for a function procedure is:

D:= ---|fcnproc I=CresultisE

Its inclusion causes a profound change in the semantics of expressions, for an expression can
now alter the value of the store. Further, an invoked function procedure might not terminate.
The valuation function for expressions must take the form:

E : Expressior> Environment> Store— (Expressible-valug Poststorg

If we use static scoping, the equations for definition and invocation are:

D[fcnproc I=C resultis E] = AeAs.((updateenf]
inFcn-prod(checKE[E] €)) o (C[C] €)) ©), (returng)
wherecheck (Store— (Expressible-value Poststorg)
— (Poststore- (Expressible-valug Poststorg))
traps errors and nontermination

8.1 Abstraction 163

E[l] = Aeis.casesdccesserl] e) of
isNatlocr(l) — ((access | § (return 9)

[isFcn-prodf) — (fs) end

All of the other semantic equations for tBefunction must be revised to cope with the com-
plications arising from side effects and nontermination. This is left as an exercise.

Declaration abstractions follow the pattern seen thus far for commands and expressions.
The syntax is:

D ::=Dy;Dy |var T | - -+ | modulel=D ||

We call the new constructmodule. The invocation of a module activates the declarations in
the module’s body. Since there is no renaming of declarations, multiple invocations of the
same module in a block cause a redefinition error.

We also have type abstracts:

D= |typel=T
To=nat| - |I

The definition and invocation of type abstracts follow the usual pattern:

D[type I1=T] = AeAs.((updateenfi] in TypdT[T] €) €), (return 9)
T : Type-structure= Environment- Store— (Denotable-value Poststorg
T[] = AeAs.casesdccesserfl] e) of

isNatlocn(l) — (inErrvalug(), (signalerr 9)

[isTypdv)—(v9 end

An issue raised by type abstraction is: when are two variables equivalent in type? There
are two possible answers. The firstiucture equivalencestates that two variables are type-
equivalent if they have identical storage structures. Structure equivalence is used in
ALGOLG68. The secondyccurrence equivalencalso known asiame equivalencetates that
two variables are type-equivalent if they are defined with the same occurrence of a type
expression. A version of occurrence equivalence is used in Pascal. Consider these declara-
tions:

type M = nat;

type N = array [1..3] of M;
var A: nat;

var B: M;

var C: M;

var D: N;

var E: array [2..4] of nat

164 Abstraction, Correspondence, and Qualification

Variables A and B are structure-equivalent but not occurrence-equivalent, because they are
defined with different occurrences of type expressions, A withand B with M. Variables B
and C are both structure- and occurrence-equivalent; C and D are neither. Variables D and E
are clearly not occurrence-equivalent, but are they structure-equivalent? The two have the
same structure in thstore but have unequal structures, due to different range bounds, in the
environment. The question has no best answer. A similar problem exists for two variable
record structures that differ only in their components’ selector names or in the ordering of their
components. The semantics of declaration and assignment given in Chapter 7 naturally
enforces structure equivalence on types.

If we wish to define the semantics of these variants of type-checking, we must add more
information to the denotable values. For arrays, the domain

Array= (Index— Denotable-valupx Indexx Index

is inadequate for occurrence equivalence checking and barely adequate for structure
equivalence checking. (Why?) A formal description of either kind of equivalence checking is
not simple, and the complexity found in the semantic definitions is mirrored in their imple-
mentations. The area is still a subject of active research.

8.1.1 Recursive Bindings

The semantics of a recursively defined abstract is straightforward; for the hypothetical
abstract:

D:=---|recabsl=M| - --

whereabs could beproc, fcn, class or whatever, a statically scoped, recursive version is:

D[[recabsl=M] = AeAs.(e, (return 9)
wheree = (updateenfl] in M(M[M] &) €

As we saw in Chapter 7, the recursively defined environmecauses a reference to identifier
[17 in [M] to be resolved with e.. This produces a recursive invocation.

What sort of abstracts make good use of recursive bindings? Certainly procedures do.
Perhaps the most important aspect of recursive invocations is the means for terminating them.
In this regard, thef-then-else command serves well, for it makes it possible to choose
whether to continue the recursive invocations or not. We can increase the utility of recursive
expression and type abstracts by adding conditional constructs to their domains:

E:=E+E | - - - |if E; thenE, elsek;
T:=nat| ---|if EthenT, elseT,

Some applications are given in the exercises.

8.2 Parameterization 165

8.2 PARAMETERIZATION

Abstracts usually carry parameters, which are dummy identifiers that are replaced by values
when the abstract is invoked. The dummy identifiers areftimmal parametersand the
expressions that replace them are dlotual parametersif a formal parameter [I] is used in

an abstract’s body in positions where a B-construct is syntactically allowed, then the actual
parameter bound to [I] must be an expression from the B syntax domain. Abstracts may have
expression parameters, command parameters, type parameters, and so on.

The principle of parameterizatiorstates that a formal parameter to an abstract may be
from any syntax domain. The denotation of an abstract's body [V] parameterized on
identifiers [h], - - -, [I] is a function of form {p;. - - - Ap,.V[V] - -). What are the
denotations of the actual parameters? There are a number of options, and an example is the
best means for study.

All parameterized abstracts in this section use only one parameter. Consider a procedure,
parameterized on a member of the Expression domain, defined by the syntax:

D= - |proc ly(l,)=C
Cu=CiC| -+ [IE)

If the abstract is statically scoped, then the domain of procedures is
Proc= Param— Store— Poststor;. The semantics of the abstractis:

D[proc I1(15)=C] = AeAs.((updateenf 1]
inProc(Aa. C[C](updateenfi ,] a e) e), (returng).

CII(E)] = heAs.casesdccesser|i] e) of
isNatlocn(l) — (signalerr 9

lisProc(@)—(q(---E[E] -~)9
end

The expression (- -E[[E] - - -) represents the denotation of the actual parameter, a member
of domainParam. Recall thatE: Expression— Environment— Store— Expressible-valués

the functionality of the valuation function for expressions. The options for the denotation of
the actual parameter are:

1. (E[E]e9€E Expressible-value the actual parameter is evaluated with the environment
and store active at the point of invocation. This is implementezhlisby-value.

2. (E[E] e): Store— Expressible-value the actual parameter is given the invocation
environment, but it uses the stores active at the occurrences of its corresponding formal
parameter in the procedure body. This is implemented as ALGOL60¢itby-name.

3. E[E]: Environment= Store— Expressible-valuethe actual parameter uses the environ-
ment and the store active at the occurrences of its corresponding formal parameter in the
procedure. This is implemented eall-by-text.

4. A fourth option used in some languages is to take the actual parameter d@anamto
be Location. This is implemented asall-by-reference.Call-by-reference transmission

166 Abstraction, Correspondence, and Qualification

presents a problem when a nonvariable expression is used as an actual parameter. Since
the denotation must be a location value, the usual strategy is to allocate a new location
that holds the expressible value of the parameter. This problem is a result of improper
language design. A solution is to make an explicit distinction in the language’s syntax
definition between Identifier L-values and Identifier R-values, as we did in Figure 2.1. A
call-by-reference parameter is not an expressible value, but the denotation of an L-value
construct, and identifiers that are Expression parameters are R-value constructs.

We conducted the above analysis assuming that expression evaluation always terminated;
that is,Expressible-valubad no| element. When nontermination of actual parameter evalua-
tion is a possibility, then each of the four options mentioned above may evaluate their actual
parameter expressions in two ways:

1. Immediate evaluatianthe value of the actual parameter is calculated before its binding to
the formal parameter. This is described by malaiggbinding strict in:

D[proc I1(I5)= C] = AeAs.((updateenfl 1]
inProg(Aa. C[C](updateenfl ;] a €)) €), (returnsg)

2. Delayed evaluation the value of the actual parameter need be calculated only upon its
use in the body of the procedure. In this case, the semantic equation for procedure
definition is left in its original form— the value, whether it be proper or improper, is
bound into the procedure’s environment.

The termcall-by-valueis normally used to mean immediate evaluation to an expressible value,
while call-by-needandlazy evaluatiorare used to mean delayed evaluation to an expressible
value. (The difference between the latter two is that, once an evaluation of an argument does
proceed, call-by-need is required to finish it, whereas lazy evaluation need only evaluate the
argument to the point that the required subpart of the argument is produced.) Most applica-
tions of options 2 through 4 use immediate evaluation. The parameter domain and strictness
guestions can be raised for all syntactic domains of actual parameters. You should consider
these issues for command, declaration, and type parameters to procedures and functions.

One of the more interesting parameterized abstracts is the parameterized type expression.
For syntax:

Du=---|typely(lp)=T]| ---
To= - ||(T)|

type structures such as:

type STACKOF(T)= record
var ST:array [1..k] of T;
var TOP:nat
end

can be written. An invocation such asr X: STACKOF(at) allocates storage for the two
components of the record: X.ST refers to an arralg npfimber variables, and X.TOP refers to

8.2.1 Polymorphism and Typing167

a number variable. The semantics of parameterized type abstractions is left as an exercise.

8.2.1 Polymorphism and Typing

An operation igpolymorphicif its argument can be from more than one semantic domain. The
answer it produces is dependent upon the domains of its arguments. As an example, a general
purpose addition operation might produce an integer sum from two integer arguments and a
rational sum from two rational arguments. This operation might be assigned functionality:

(Integerx Integel) U (Rationalk Rationa) — IntegerJ Rational

Unfortunately, the dependence of the codomain on the domain isn't clearly stated in this
description. The graph of the operation is the union of the integer addition and rational addi-
tion operations. Polymorphic operations do not fit cleanly into the domain theory of Chapter 3,
and our semantic notation does not include them.

Polymorphism does appear in general purpose programming languages. Strachey dis-
tinguished between two kinds:ad hoc polymorphism(also called overloading and
parametric polymorphismAn ad hoc polymorphic operator “behaves differently” for argu-
ments of different types, whereas a parametric polymorphic operation “behaves the same” for
all types. (We won't attempt more specifddinitions because the concepts have proved
notoriously difficult to formalize.) In Pascal, a typed language, the + symbol is overloaded,
because it performs integer addition, floating point addition, and set union, all unrelated opera-
tions. A Pascal compiler determines the context in which the operator appears and associates a
specific meaning with +. In contrast, tihel operator in Edinburgh ML is parametric. It can
extract the head integer from a list of integers, the head character from a list of characters, and,
in general, the head from ana-list. hd is a general purpose function, and it is implemented
as a general purpose operation. Regardless of the type of argument, the same structural mani-
pulation of a list is performed.

The denotational semantics of an overloaded operator is straightforward to express. Here
is a semantic equation for the Pascal addition expression:

E[E +E,] = AeAs.casesE[E] e9 of
isNat(n;) — (casesE[E,] e 9 of
isNat(n,) — inNat(n; plus n)
- end)

[isRafr,) — (casesE[E,]e9 of

[isRair,) — inRafr, addrat r,)
- end)

[isSeft;) — - - - inSeft; uniong) - - -
- end

168 Abstraction, Correspondence, and Qualification

A pre-execution analysis like that performed in Figure 7.3 can determine whigiuef
addrat, orunionis the denotation of the +.

Parametric polymorphic operations are more difficult to handle; we give one method for
doing so. Consider thad operator again. In ML, numbers, lists, tuples, sums, function
spaces, and the like, are all data types. Its expressible value domain balloons to:

Exprval= (Nat+ Exprval’ + (ExprvakExprval) +
(Exprvak-Exprva) + (Exprval= Exprva) + Errvalue),

Thehd operator manipulates an expressible value list:

E[hdE] = Ae.letx= E[E] ein casex of
isNat(n) — inErrvalug()
[isExprval (1) — hd|
l - -end

The disadvantage of this formulation is théatlists such ast(vo consone cons nibecome
inExprval (inNat(two) consinNat(one cons ni). We would prefer thahd operate directly
uponNat-lists, NatxNatlists, and the like, but both theoretical problems (mathematically, the
hd operation literally becomes too “large” to be well defined) and notational problems (try to
definehd in the existing semantic notation) arise. Tteal problem lies in our version of
domain theory. Our domains live in a rigid hierarchy, and there exists no “universal domain”
that includes all the others as subdomains. If a universal dobhalid exist, we could define

a single operatiomd : U — U that maps those elements dfthat “look like” o-lists to ele-
ments inU that “look like” a-values. ThenE[hdE] =Ae.hd(E[E]e). A number of
researchers, most notably McCracken and Reynolds, have developed domain theories for
universal domains and parametric polymorphism.

We next consider polymorphic parameterized abstracts. The parameterized abstracts in
the previous section are untyped— no restrictions (beyond syntax domain compatibility) are
placed on the formal and actual parameters. This is the version of abstraction used in untyped
languages such as BCPL and LISP. If the untyped version of parameterized abstract is used in
a typed language such as Pascal, the abstraction acts polymorphically. Consider a command
abstract whose denotation lies in the domimc = Expressible-value> Store— Poststore.

A procedure’s actual parameter can be an integer, a truth value, an array, or whatever else is a
legal expressible value.

However, a typed programming language like Pascal requires that formal parameters be
labeled with type expressions. The expression acts as a precondition or guard: only actual
parameters whose type structures match the formal parameter’s are allowed as arguments. The
advantages of typing— pre-execution type equivalence verification, increased user understand-
ing of abstracts, and efficient execution— are well known.

We use the syntax

D::
C:

<+ |proc I,(1,:T)=C

for procedures that receive actual parameters from the Expression syntax domain. The value
bound to [b] must have type structure [T].

8.2.1 Polymorphism and Typing169

The semantics of typed parameters can be handled in two ways: (1) the type information
can guard entry to the abstract at invocation; (2) the abstract’s denotation is restricted at
definition to a function whose domain is exactly that specified by the type. To define the first
version, we use a valuation function:

Ts: Type-structure= Environment= Expressible-value
— (Expressible-value Errvalue)

such that T+[T] e ¥ determines whether or nathas data type [T]. If it does, the result is
inExpressible-valug); otherwise it is ifErrvalug). Ts is a type-equivalence checker. The
semantics of statically scoped procedure declaration is:

Dl[proc I1(I5:T)=C] = e As.((updateenfi 1]
inProc(Ax.casesT'[T] e X of
isExpressible-valugs) — C[C](updateenfl 5] x: €)
[isErrvalug) — signalerr end)
e), (return 9)

The second version fragments tReoc domain by making it into a family of procedure
domains:

Nat-proc= Nat— Store— Poststore
Array-proc= Array— Store— Poststore
Record-proe Record- Store— Poststore

For simplicity, we give only three kinds of parameter domains. (You are given the problem of
formulating a complete hierarchy of domains for Pascal.) Another version dfithenction is
needed. First, we define:

Type-tag= Nat-tag+ Array-tag+ Record-tag- Err-tag
whereNat-tag= Array-tag= Record-tag Err-tag= Unit

Each nonkrr-tag corresponds to one of the parameter domains. The valuation funkttion
Type-structure= Environment= Type-tagmaps the formal parameter’s type information to a
type tag value in the obvious fashion. A declaration of a typed procedure has semantics:

D[proc I1(1,:T)=C] = heAs.cases[T] e) of

isNat-tag) — ((updateenfl 1] inNat-prodin. C[C](updateenfi 5]
inNat(n) €)) e), (return 9)

isArray-taq) —

((updateenfl 1] inArray-proqia. C[C](updateenfi 5]

inArray(a) €))), (return 9)

isRecord-tag) — (similar to above)

iserr-tag() — (e, (signalerr 9)

end

170 Abstraction, Correspondence, and Qualification

This semantics explicity restricts the abstract’s argument domain by selecting a particular
function at the point of definition. More specific information exists about the data type of the
parameter, and a more thorough pre-execution analysis can be performed.

Both of these two description methods have drawbacks. You are left with the problem of
finding a better solution to parameter-type enforcement.

8.3 CORRESPONDENCE

Theprinciple of correspondends simply stated: for any parameter binding mechanism, there
may exist a corresponding definition mechanism, and vice versa. That is, if elements from a
domainD may be denotable values of formal parameter identifiers, then element®froay
be denotable values of declared identifiers, and vice versa. Since an environment is a map
from identifiers to denotable values, and a declared identifier is used no differently than a
parameter identifier, the correspondence principle makes full use of the semantic domains.

The correspondence between the two forms of binding becomes clear when their seman-
tic equations are compared. Consider once again a statically scoped command abstract with a
single parameter; ldD be the domain of parameter denotations. Equations for definition and
invocation read:

D[proc I1(1,)=C] = AeAs.((updateenfl 1]
inProc(Ad. C[C](updateenfl ,] inD(d) €)) €), (returng)

CII(M)] = heAs.casesdccesseri] e€) of

lisProc@)—q(---M[M] ---)s
- end

We see that iD(---M[M] -) is bound to [b] in [C]’'s environment. We can build a
definition construct with similar semantics:

D[define|=M] =AeAs.((updateenfi] in D(- - -M[[M] - - -) €), (return 9)

Thus,C[begin proc I(1)=C; I(M) end] = C[begindefineli=M; C end] for phrases [M] and
[C] that contain no free occurrences of [I]. The questions we raised in Section 8.2 regarding
the domains of formal parameters now apply to declared identifiers as well.

The correspondence principle may also be practiced in the other direction. When we con-
sider the definition form for variables:

Dfvar I:T] = heAs.let d, p)= (T[T] €9 in ((updateenfi] d e, p)

we see that the value bound to [[I] is an activated type denotation; that is, a reference to newly
allocated storage, rather than an expressible value. (Perhaps we should write variable
definitions as [ref T].) The corresponding binding mechanism is:

8.3 Correspondence 171

D[proc I1(15)=C] = AeAs.((updateenf 1]
inProc(Ad. C[C](updateenfi ,] d €) e, (returng)

CII(M] = reAs.casesdccesser|ii] e) of

[isProc(q) —let (d, p) = (T[T] e9 in (checKq d))(p)
- end

Storage for a data object of type [T] is allocated when the procedure is invoked, and a refer-
ence to the storage is the denotation bound to the parameter. This form of parameter transmis-
sion allocates local variables for a procedure. You should study the differences between the
version ofC[I(T)] given above and the version induced by the correspondence principle from
[type I=T].

The principle of parameterization can be derived from the principles of abstraction and
correspondence by first uniformly generating all possible abstraction forms and then deriving
the parameter forms corresponding to the definitions.

8.4 QUALIFICATION

The principle of qualificationis that every syntax domain may have a block construct for
admitting local declarations. The language of Figure 8.1 already has a block construct in the
Command domain. Blocks for the other domains take on similar forms:

E := - | beginD within Eend| - - -
D := - | begin D4 within D, end| - - -
T:= --- |beginD within Tend| - - -

and so on. For a syntax domain M, the semantics of an M-blbagih D within M end] is

M [M] with an environment augmented by the definitions [D]. The definitions’ scope extends
no further than [M]. Assuming the usual static scoping, we state the semantics of the M-block
as:

M: M — Environment> Store— (M x Poststorg
M[begin D within M end] = AeAs.let (e,p)= (D[D] e9
in (checkM[M] e))(p)

This format applies to Command blocks, Expression blocks, Type blocks, and so on. A techn-
ical problem arises for Declaration blocks. The scope of local definitiong] [@ block

[begin D; within D, end] should extend only as far as [H}), but the D valuation function
defined in Figure 7.2 processes its environment argument as if it were a store— the additions
to the environment are retained beyond the scope of the declaration block. A solution is to
make the denotation of a declaration be a list of binding pairs:

172 Abstraction, Correspondence, and Qualification

D : Declaration— Environments Store—
((Identifierx Denotable-valug x Poststorég

Thus, D[D] e 9 denotes the bindings (and the post-store) defined by [D] and not the environ-
ment that results when those bindings are added t®’s definition and the semantics of
declaration blocks are left as exercises.

A number of useful constructions result from the the qualification principle. For exam-
ple, a Declaration block used within a Declaration abstract creates a Modularsigele.
Here is an example that models a natural number-containing stack:

module STACK-OF-NAT =

begin
var ST:array [1..k] of nat;
var TOP:nat

within
proc PUSH(I: nat) = if TOP=k then skip

else(TOP=TOP+1; ST[TOP]=I);

proc POP= if TOP=0 then skip elseTOP=TOP-1,
fcn TOP= if TOP=0 then error else ST[TOP];
proc INITIALIZE = TOP=0

end

The declarationvar STACK-OF-NAT creates procedures PUSH, POP, TOP, INITIALIZE,
and function TOP. The variables ST and TOP are local definitions that are hidden from out-
side access.

Type blocks are also useful. First, recall that the syntax of a record structure is:
T:="--+|recordDend]| -

Since the body of a record is a declaration, records of variables, procedures, functions, or
whatever are allowed. These make semantic sense as welRdoord = |dentifier —
Denotable-valueand Denotable-value= (Natlocn +Array +Record +Proc+ - -+). Since

Type blocks allow local variables to a type structure, we can create a SIMULA-Gbds

Here is an example of a type definition for a stack class parameterized on the element type:

type STACK-OF(X) =

begin
var ST:array[1..K] of X;
var TOP:nat

within record
proc PUSH(I:X)= - - - (as before)
proc POP= - - -
fcn TOP= - - -
proc INITIALIZE = - -~

8.4 Qualification 173

end
end

A definition var A: STACK-OF(at) creates a record with components A.PUSH,
A.POP, A TOP, and A.INITIALIZE. One technical point must be resolved: the type parame-
ter X has two roles in the definition. It induces storage allocation in the definition
var ST:array [1..k] of X and it does type equivalence checking pnoc PUSH(I:X). Both
theT andT valuation functions are needed.

8.5 ORTHOGONALITY

The introduction to this chapter stated that the abstraction, parameterization, correspondence,
and qualification principles were tools for programming language design. Any programming
language can be uniformly extended along the lines suggested by the principles to produce a
host of user conveniences. The design principles encourage the developmeattbbgonal
language.

What is orthogonality? A precise definition is difficult to produce, but languages that are
calledorthogonaltend to have a small number of core concepts and a set of ways of uniformly
combining these concepts. The semantics of the combinations are uniform; no special restric-
tions exist for specific instances of combinations. Here are two examples. First, the syntax
domain Expression is an example of a core concept. An expression should have equal rights
and uniform semantics in all contexts where it can be used. In ALGOL68, any legal member
of Expression may be used as an index for an array; e.g., “A[4+(F(X)-1)]” is acceptable. The
semantics of the expression interacts uniformly with the semantics of the array-indexing
operation, regardless of what the expression is. This does not hold in FORTRAN IV, where
there are restrictions on which forms of Expression can be used as indexes— the expression
4+ (F(X)-1) is too complex to be a FORTRAN array index. The semantics of expressions is
not uniformly handled by the FORTRAN-indexing operation. A second example is the
specification of a result type for a function. In Pascal, only values from the scalar types can be
results from function procedures. In contrast, ML allows a function to return a value from any
legal type whatsoever.

Orthogonality reduces the mental overhead for understanding a language. Because it
lacks special cases and restrictions, an orthogonal language definition is smaller and its imple-
mentation can be organized to take advantage of the uniformity of definition. The principles
introduced in this chapter provide a methodology for introducing orthogonal binding concepts.
In general, the denotational semantics method encourages the orthogonal design of a language.
A valuation function assigns a uniform meaning to a construct regardless of its context.
Further, the semantic domains and function notation encourage uniform application of
concepts— ifsomemembers of a semantic domain are processed by an operation, then
arrangements must be made to haralleof them. The compactness of a language’s denota-
tional definition can be taken as a measure of the degree of the language’s orthogonality.

174 Abstraction, Correspondence, and Qualification

SUGGESTED READINGS

Semantics of abstraction and parameterization: Berry 1981; Gordon 1979; Plotkin 1975;
Tennent 1977b

Semantics of qualification and correspondence:Ganzinger 1983; Goguen & Parsaye-
Ghomi 1981; Tennent 1977b, 1981

Polymorphism & typing: Demers, Donohue, & Skinner 1978; Kahn, MacQueen, & Plotkin
1984; McCracken 1984; MacQueen & Sethi 1982; Reynolds 1974, 1981, 1985

EXERCISES

1. Describe the different scoping mechanisms possible for the Declaration, Type-structure,
Identifier-L-value, and Subscript abstracts derived from Figure 8.1. Write the semantic
equations for the various scoping mechanisms and give examples of use of each of the
abstracts.

2. Consider the interaction of differently scoped abstracts:

a.

b.

Which forms of scoping of expression abstracts are compatible with statically scoped
command abstracts? With dynamically scoped command abstracts?

Repeat part a for differently scoped declaration abstracts and command abstracts; for
differently scoped type abstracts and command abstracts; for differently scoped
declaration abstracts and expression abstracts.

3. Apply the abstraction principle to the language in Figure 5.2 to create command
abstracts. Define the semantics of command abstracts in each of the two following ways:

a.

The denotations of command abstracts are kept in a newly created semantic argument,
the environment. Since variable identifiers are used as arguments to the store, what
problems arise from this semantics? Show how the problems are solved by forcing
variable identifiers to map to location values in the environment.

The denotations of command abstracts are kept in the store; that is,
Store= Identifier— (Nat+ Proc);, where Proc= Storg — Storg. What advantages

and drawbacks do you see in this semantics?

4. Consider the interaction of parameter-passing mechanisms and scoping mechanisms.
Using their semantic definitions as a guide, comment on the pragmatics of each of the
parameter transmission methods in Section 8.2 with statically scoped command abstracts;
with dynamically scoped command abstracts.

5. In addition to those mentioned in Section 8.2, there are other parameter transmission
methods for expressions. Define the semantics of:

a.

Pascal-style call-by-value: the actual parameter is evaluated to an expressible value, a
new location is allocated, and the expressible value is placed in the new location’s

Exercises 175

cell. Assignment to the new location is allowed within the abstract’s body.

b. PL/1-style call-by-value-result: an Identifier-L-value parameter is evaluated to a loca-
tion. The value in that location is copied into a newly allocated cell. Upon the termi-
nation of the abstract, the value in the new cell is copied into the location that the
actual parameter denotes.

c. Imperative call-by-need: like ALGOLG60-style call-by-name, except that the first time
that the actual parameter is evaluated to an expressible value, that value becomes the
value associated with the parameter in all subsequent uses. (That is, for the first use of
the parameter in the abstract, the parameter behaves like a call-by-name parameter.
Thereafter, it behaves like a call-by-value parameter.)

What are the pragmatics of these parameter-passing mechanisms?
6. Define the syntax and semantics of a command abstract that takes a tuple of parameters.

7. An alternative to defining recursive abstracts via recursively defined environments is
defining them through the store. Let:

Store= Location— (Nat+ - - -+ Proc+ - - -),
whereProc= Store— Poststore

be a version of store that holds command abstracts. For:
Declaration— Environment= Store— (Environmenk Poststorg, let:

D[[procl=C] = Ae.As.let (, p) = allocate-locn sin
let er= updateen\l] I e
in (e, (checKreturne (updatel inProc(C[C] e)))(p))

be the semantics of procedure declaration.

a. Write the semantic equation for procedure invocation. Explain the mechanics of
recursive invocation. Why is it that recursive calls can occur fixudoes not appear
in the semantics of declaration? Under what circumstances does the use of [I] in [C]
notcause a recursive invocation?

b. Suggest how this semantics might be extended to allow self-modifying procedures.

8. A variation on expression parameters that was not mentioned in Section 8.2 is the follow-
ing: (Ae.E[E] e9 : Environment> Expressible-value

a. Revise the semantic equations to fit this form. Explain how this would be imple-
mented.

b. Show why this form of parameter transmission could easily lead to access errors in
the store.

9. Revise the list-processing language given in Figure 7.5 to be typed:

i. Setthe domaitomto beNat.
ii. Assign to each well-formed member of the Expression syntax domain a type.
For example, [1] has type tiat,” [1 CONS NIL] has type “natlist,” and

176 Abstraction, Correspondence, and Qualification

10.

11.

12.

13.

14.

15.

[(LAMBDA (X: natlist) (HEAD X))] has type “natlist — nat.”

a. Alter the language’s semantics so that the data typing is enforced; that is, ill-typed
expressions have an erroneous denotable value.

b. What is the data type of [NIL]? Is the construct overloaded or is it parametrically
polymorphic?

c. Are there any expressions that have well-defined denotations in the untyped
language but have erroneous denotations in the typed language? (Hint: consider the
example of self-application in Section 7.2.2.)

d. Which constructs in the language could be profitably made polymorphic?

e. Are the recursively defined semantic domains absolutely needed to give a denota-
tional semantics to the typed language? (Hint: consider your answer to part ¢ and
study the hierarchi¥iDArray in Section 7.3.)

Install occurrence equivalence type-checking into the semantics of an imperative
language that uses the definition structures of Figure 8.1.

a. Define the semantics of these constructs:

E:
T:

-+ - |if E; thenE; elseE;
-+ - |if Ethen T, elseT,

b. Define the semantics of these abstracts:
D:= ---|recfcnly(l;)=E |rectypel (I5)=T

for expression parameters |
c. Give examples of useful recursively defined functions and types using the constructs
defined in parts a and b.

Add parameterized command abstracts to the language of Figure 5.6 bat idolude

data type information for the formal parameters to the abstracts. In Section 8.2.1, it was
suggested that this form of abstract appears to be polymorphic to the user. Why is this
form of polymorphism appropriate for this particular language? But why do the
polymorphic abstracts have limited utility in this example? How must the language’s
core operation set be extended to make good use of the polymorphism? Make these
extensions and define their semantics.

Here is an example of a parameterized abstract in which formal parameters are parameter-
ized on other formal parametersprpc stack(T; op: F=T); C].

a. Show how this example is derived from the correspondence principle.
b. Give a denotational semantics to this example.

Formalize the semantics of the principle of correspondence.

Give the semantics of the Expression, Declaration, and Type blocks listed in Section 8.4.

16.

17.

18.

19.

20.

21.

Exercises 177

What form of parameter transmission is induced by the correspondence principle from
the ALGOLG68 variable declaratioddcint I:=E]?

For each language listed below, apply the design principles described in this chapter. For
each principle, document your design decisions regarding syntax, semantics, and prag-
matics.

a. The calculator language in Figure 4.3.
b. The imperative language in Figures 5.1 and 5.2.
c. The applicative language in Figure 7.5.

Using the language in Figure 7.2:

a. Use the principle of abstraction to develop expression and command abstract
definition constructs. Give their semantics.

b. Use the principle of correspondence to develop the corresponding parameter forms
and parameter transmission mechanisms for the abstracts. Give their semantics.

c. What other forms of parameters and parameter transmission would we obtain if part b
was redone using the principle of parameterization? Give their semantics.

Milne has proposed a variety of composition operations for declarations. Three of them
are:

a. [D,andD,]: the declarations in [R] and [D,] are evaluated simultaneously, and
the resulting bindings are the union of the two.

b. [D,within D5]: [D ¢]'s bindings are given to [B] for local use. The bindings that
result are just [B]'s.

c. [D1;Ds]: [D 1]'s bindings are passed on to fp. The result is [B:]'s bindings
unioned with those bindings of [{J} that are not superceded by p's.

Define the semantics of these forms of composition, paying careful attention to erroneous
forms of composition (e.g., in part a, [[pand [D,] share a common identifier).

Use the version of T: Type-structure= Environment= (Denotable-
valuex Environmenk defined in Exercise 24 of Chapter 7 with the version Df
Declaration— Environment= Environmentn Figure 7.1 of Chapter 7 to redefine all of

the examples of the language design principles in Chapter 8. Describe the pragmatics of
the new definitions versus the ones in Chapter 8.

The design principles in this chapter set useful bounds for language extension. Nonethe-
less, economy of design is another valuable feature of a programming language. After
you have worked either Exercise 17 or 18, comment on the pragmatics of the constructs
you have derived. Which of the new constructs are better discarded? Why aren’t
language design and formal semantics definition the same thing?

Chapter 9

Control as a Semantic Domain

The sequencing found in programs’ denotations is somewhat illusionary. Sequencing is an
operational concept, and function definitions contain no actual “sequencing,” regardless of
their format. The sequencing is suggested by the simplification strategies for function notation.
A simplification step corresponds roughly to an operational evaluation step, and the order in
which the simplifications occur suggests an operational semantics. More than one
simplification strategy may be acceptable, however, so the operational ideas do not predom-
inate the definition.

The style of denotational semantics we have been using is ditiect semanticsDirect
semantics definitions tend to use lower-order expressions (that is, nonfunctional values and
functions on them) and emphasize the compositional structure of a language. The equation:

EIIE1+E2]] = }\.S.E":El]ls plUSEI[Ez]]S

is a good example. The equation gives a simple exposition of side-effect-free addition. The
order of evaluation of the operands isn’t important, and any simplification strategy works fine.
One of the aims of the denotational semantics method is to make the meanings of program
constructs clear without relying on operational mechanisms, and in this regard direct seman-
tics performs well.

Languages designed for low-level or general application confront their users with the
concept of controlControl might be defined as the evaluation ordering of a program’s con-
structs. A language that promotes control as a primary feature provides the user with the abil-
ity to affect the control; that is, to change the order of evaluation. Control is an argument that
the user can seize and alter. An example of a control argument is the stack of activation
records maintained in support of an executing program. The stack contains the sequencing
information that “drives” the program, and altering the stack alters the program’s future order
of evaluation.

The semantic argument that models control is calledrdinuation. Continuations were
first developed for modelling unrestricted branches (“gotos”) in general purpose languages,
but their utility in developing nonstandard evaluation orderings has made them worthy of
study in their own right. This chapter presents a number of forms of continuations and their
uses.

9.1 CONTINUATIONS

We begin with a small example that uses a control argument. Consider an imperative
language similar to the one in Figure 7.2 augmented with a FORTRANStilge command.

The evaluation of &top in a program causes a branch to the very end of the program, cancel-
ling the evaluation of all remaining statements. The output store that the program produces is

178

9.1 Continuations 179

the one that is supplied as an argumergttip. The semantics of stop command can be han-

dled within direct semantics by applying the technique used in Figure 7.1 to trap error values,
but we wish to model the change of control more directly. We add a control stack argument to
the semantic function. The control stack keeps a list of all the commands that need to be
evaluated. The valuation function repeatedly accesses the stack, popping off the top command
and executing it. An empty stack means that evaluation is complete, atap@&ommand

found at the top of the stack causes the remainder of the stack to be discarded. The valuation
function for commands has functionality:

C: Command- Environment= Control-stack— Store— Storq

where ce Control-stack- (Control-stack— Store— Store)|. The expression G[C]ecy
resembles an interpreter-like configuration wheZ§(]) is the control stack topg is the
remainder of the stack, arsds the usual store argument. A fragment of @éunction reads:

CI[C1:C5] = heAcas.C[Cq]e((CI[Cs]le)cons g s
C[l: =E] = heAcis.(hd g (tlc) (updatgaccesserfl] €) (E[E] e9 9)

C[stop] = heAc.As. s

We obtain a neat definition for thehile-loop:

C[while B do C]] = Ae icAs.B[[B] es— C[C] e ((C[while B do C]le)cons ¢ s
[(hdg (tic) s

which makes clear that control returns to the top of the loop after evaluating the loop’s body.

Whenever thec stack is popped,hdd is always given f{c) as its argument. The
simplification steps are shortened if the semantics of;&] is written so that C[C,]e)
takesc as an argument at “push-time.” The stack can be replaced by a function. This new
function is a ommanyl continuation. Its domain is c€ Cmdcont Store— Store. The
language fragment now reads:

C: Command- Environment= Cmdcont= Cmdcont

C[C1;Co] = helc.C[Cq]e(CIC,]eQ

C[I: =E] = AeAcAs. updatgaccessenl] €) (E[EJe9 9)

C[stop] = heAc.As. s

C[if Bthen C; elseC,] = AeAc. chooséB[B] e) (C[C1]e0 (C[Cs]e©

Cwhile B do C] = Ae ic. fix(Acr. choos€B[[B] €) (C[C] eo) ¢)

wherechoose (Store— Tr) — Cmdcont= Cmdcont= Cmdcont
choosebc; co=As.(b9—=(c19) [(c9)

The continuation argumertrepresents the “remainder of the program” in each of the
clauses. Thavhile-loop equation is now a least fixed point over the continuation argument
rather than the store, for the loop problem is stated as “how does the remainder of the program
appear if thewhile-loop can reappear in it an unbounded number of times?” Comparing this

eqguation with the one defined using the control stack will make things clear.
Figure 9.1 shows a program and its continuation semantics. The nested continuation

180 Control as a Semantic Domain

Figure 9.1

Let Cy=Cy;Cy;stop,Cq
Cl =X:=1
C2 = while X> 0do C3
Cy=X:=X-1

ClCol e, finish g

wheree, = (updateen{X] |q &)
andfinish= (As.9

ClC1l e (C[C,;stop;Cq] & finish) s;
(AcAs. dupdatdaccesseniX] ey) (E[1] e;9) 9) (C[C,;stop;Cy] ey finish) s;
(CI[Cs] e (C[stop;Cq] & finish)) (updated one g)

S
fixF s,

whereF = Ac.choosé€B[X > 0] e;) (C[Cs]le; ¢) ¢;
wherec, = C[stop;C,] &; finish

(B[X> 0]e; s,) = (C[Csl e (fixF) s;) [(¢1)
CICsle (fixF) s,
(fix F) (update § zero s)

S
(B[X> O] e, s3) = (C[Csl e, (fixF) s5) | (€1 53)
(C1 %)
C[stople; (C[C1] e finish) s;

S3

resembles a form of left-to-right function composition that can be overridden when an

9.1 Continuations 181

extraordinary condition (e.g.,stop command) occurs. Herein lies the utility of continuations,
for normal function composition could not be overidden in a direct semantics definition.

The abstractions in the semantic equations are all nonstrict. The continuations eliminate
the need for strict abstractions on the store arguments. You can see the reason in the definition
for the while-loop: the value of C[while B do C]le c9 is undefined, iff all finite expansions
of the loop maps to undefined, iffc is not applied to any store in any finite expansion. The
remainder of the program (that is) is never reached when a “loop forever” situation is
encountered. A semantic equati@fC] =AcAs.d - - s - *) ddines a construct [C] that is
guaranteed to terminate, forc is applied to the updated store. An equation
CIC] = AcAs.(- -) csdefines a construct whose termination is not guaranteed, sa lawith
sare carried along for use by { -).

Since a continuation represents a program’s complete computation upon a store, the con-
tinuation may contain some final “cleaning up” instructions that produce a final output. For
example, the finish continuation used in Figure 9.1 might also be defined as
finish= (As."done’, which would make all the command continuations into mappings from
stores to character strings. The general form of the command continuation domain is:

c& Cmdcon& Store— Answer

whereAnswercan be the domain of stores, output buffers, messages, or whatever. This gen-
eralization makes continuations especially suitable for handling unusual outputs.

9.1.1 Other Levels of Continuations

The semantic equations defined in the previous section show that the command valuation
function can be written in continuation style and coexist with other valuation functions written
in the direct style. Nonetheless, let's consider representing the valuation function for expres-
sions in the continuation style. Recall that

E: Expression- Environment> Store— Expressible-valués the functionality of the valua-

tion function. In continuation form, expression evaluation breaks into explicit steps. In terms
of the control stack analogy, axpression continuatioresembles a stack of evaluation steps

for computing the value of an expression. Expression continuations for some expressions will
create intermediate values that must be saved along the way. This suggests:

k€ Exprcont Expressible-value> Store— Answer

The expressible value argument to an expression continuation is the intermediate value of the
partially evaluated expression. TAaswer'domain will be considered shortly.
The semantic equations for some of the expression constructs read as follows:

E: Expression= Environment= Exprcont- Store—= Answer
E[E+E>] = AeAK.E[E] e (An1. E[E5] € (Any. k(ng plus 1))
E[I] =2eikAs. Kaccesgaccesserfl] €) s) s

E[N] = Aeik. KN[NT)

Notice how the steps in the addition expression are spelled out by the nested continuation:

182 Control as a Semantic Domain

[E] evaluates and binds t;; [E»] evaluates and binds ta,; andk, the subsequent evalua-
tion, carries on withrg; plus rp).

How do the expression continuations integrate with the command continuations? The
answer is tied to the structure Ahswer'. If the ultimate answer of an expression is the value
of the expression, that iAnswer= Expressible-valuethen two different levels of control
result: expression level control and command level control. The interface between the two is a
bit awkward:

C[I: =E] = Ae.Ac.As. dupdatdaccesseni] e) (E[E] efing) 9)
wherefin€ Exprcontis fin=AnAs.n

If Answer= Answer then the two levels of control integrate nicely:
C[l: =E] = AeAcAs. E[E] e (\nAs. c(updatdaccesserfl] e/ ns)) s

Now Exprcont Expressible-value> Cmdcont which makes clear that the purpose of a series
of expression evaluation steps is to produce a value and return back to the level of command
control. In an implementation, the code for evaluating expressions exists on the same control
stack as the code for evaluating commands.

In a similar fashion, continuations can be introduced into the other valuation functions of
a language. Even the operations of the semantic algebras can be converted. As an example, a
completely sequentialized version of assignment reads:

C[l: =E] = AeAc. accessenfl] e (Al. E[E] e (An. updatel nc))

where
accessenv Identifier— Environment= (Location— Cmdconf— Cmdcont
accessenw Ai.Aeim. m(e(i))

andupdate: Location— Expressible-value> Cmdcont= Cmdcont
update= Al.AnACAS. d[I n]s)

An assignment statement determines its left-hand-side value first, then its right-hand-side
value, and then the update.

Figure 9.5 shows a complete imperative language using command and expression con-
tinuations.

9.2 EXCEPTION MECHANISMS

We can use continuations to develop exception-handling mechanismexo&ption handler
is a procedure that is invoked when an extraordinary situation occurs that cannot be handled
by the usual order of evaluation. Control transfers to the handler procedure, which adjusts the
state so that computation may resume. Exception handlers of various forms can be found in
PL/1, ML, CLU, Ada, Scheme, and many other languages.

On the invocation of an exception handler, the continuation that owns the store surrenders
the store to the handler, which is also a continuation. The handler repairs the store and

9.2 Exception Mechanisms183

relinquishes control to a continuation representing some remainder of the computation. Figure
9.2 presents a simple version that meshes with the language in Section 9.1.

An exception is signaled byrfisel], which discards the existing continuation and
extracts the continuation for [[I] from the environment. The handlen [[do C] applies its
body to the store and yields control to the continuation that represents the commands follow-
ing the enclosindpegin-endblock.

It is disconcerting that the continuatianin the configuration C[raisel]Jec9 is dis-
carded. It suggests that the complete plan of evaluation is abandoned when an exception
handler is invoked. Actually, this is not true: the continuation assigned to the handler “over-
laps” the one that was discarded; the commands following the current active block are
evaluated as planned. You are left with the exercise of revising the definition so that this pro-
perty is explicit.

9.3 BACKTRACKING MECHANISMS

A useful variant of exception handling is the “undoing” of evaluation steps back to a
configuration that is “safe.” This version of exception handling is catbedktracking. Back-
tracking is an integral feature of programming languages designed for heuristic problem-
solving: if a problem solving strategy fails, a backtrack is taken to a configuration that allows
an alternative strategy to be applied. These “strategies” are continuations.

We integrate a backtracking facility into a language by usitigilare continuation.The
continuation representing the usual evaluation sequence is callseddbess continuatioifhe
failure continuation is invoked when backtracking is needed. Maintenance of the failure con-
tinuation is done by certain constructs in the language: exception-handler definitions, choice
constructs, cut points, and so on. Figure 9.3 presents a programming language that resembles a
propositional version of PROLOG.

The success continuation is built from the subgoals in the conjunctive constru&jC
The failure continuation is updated by the choice construgtdiGC,], which chooses the
strategy indicated by goal [[} and saves alternative strategy Jldn the failure continuation;
and by the break point construatyt], which disallows backtracking past the point marked by
the break point. The success continuation is applied when an endmiotdedwithF] is
encountered, and the store is updated about the achievement. Similarly, the failure continua-
tion is applied when affil] construct is encountered. Tleg construct saves the store in its
failure continuation so that the updates done in an unsuccessful strategy are undone. This
treatment of the store violates the usual “sequentiality” of store processing, and you are left
with the exercise of finding an alternative semantics that is “sequential.”

9.4 COROUTINE MECHANISMS

Section 9.3 generalized from using one continuation to two; now we generalize to a family of
them. A system of continuations that activate one another can be used to desigiutine

184 Control as a Semantic Domain

Figure 9.2

Abstract syntax:
D& Declaration

Ce Command
| € Identifier
D:=Dy;Dy| ---|onldoC
C = beginD;Cend]| - - - |raisel

Semantic algebras:

I. Program outputs
DomainAnswek (Store+ String)

Il. Command continuations
Domainc& Cmdcont Store— Answer
Operations

fin: Cmdcont
fin=As.inStorgs)

err: Cmdcont
err=As.inString"error")

I1l. Denotable values
DomainDenotable-value Cmdcont# Nat+ - - -

IV. Environments
Domaine< Environment Identifier— Denotable-value
Operations (usual)

Valuation functions:

D: Declaration— Environment> Cmdcont= Environment
DID 1;D,] = Aeic.D[D,] (D[D1]eQ c
D[onldoC] = hAeic. updatdl] in Cmdcon{C[C] eq e

C: Command- Environment= Cmdcont= Cmdcont
C[beginD;Cend] = AeAc.C[C] (D[D] eg c
C[raisel] = Aelc.casesdccesseril] e) of

isCmdconfcr) — ¢
[isNat(n) — err
l - -end

Figure 9.3

9.4 Coroutine Mechanisms 185

Abstract syntax:

P= Program
D& Declaration
Ce Command
| € Identifier
FE Primitive-operator
P:=D.?C
D:= Dl.Dz I |« C
C:=C,G | G orCy | | succeedwith |fail | cut

Semantic algebras:

I. Program outputs
DomainAnswee Storet String

Il. Stores
Domainse Store

186 Control as a Semantic Domain

Figure 9.3 (continued)

I1l. Continuations
Domainc& Cmdcont Store— Answer
fc & Failure-cont= Cmdcont
sc= Success-cort Failure-cont— Cmdcont
Operations

succeededSuccess-cont
succeeded Afc.As. inStorgs)

failed: Failure-cont
failed= As.inString("failure™)

IV. Evaluation strategies
DomainStrategy Success-cont Failure-cont— Cmdcont

V. Environments
Domaine& Environment ldentifier— Strategy
Operations
emptyenvEnvironment
emptyen¥ Ai. (AscAfc. fc)

accessemidentifier— Environment> Strategy(usual)
updateenvldentifier— Strategy- Environment> Environmen{usual)

Valuation functions:

P: Program— Cmdcont
P[D.?C]= C[C] (D[D] emptyenysucceeded failed
D: Declaration— Environment= Environment
D[D:.D.] = D[D,] - D[D4]
D[l <= C] = Ae.updateeni] (C[C] e) e
C: Command- Environment= Strategy
CIC1,C] = Aeisc.C[C1]e(C[Co]es9
C[C;orC,] = heiscAfchs.C[C1] e sc(As.C[C,]escfcys
C[1] = accessenfl]
C[[succeedwithF] = Ae AscAfc. As. sc fo(F[F] 9)
C[fail] = AeAscfc. fc
Clcut] = AeAscAfc. sc failed

F: Primitive-operator= Store— Store (omitted)

systemUnlike a subroutine, a coroutine need not complete all the steps in its continuation

9.4 Coroutine Mechanisms 187

before relinquishing control to another. A program configuration carries along a collection of
partially completed continuations, representing the coroutines in the system. Let us call this
collection acoroutine environmeniVhen a coroutine is invoked, the current active continua-
tion is saved in the coroutine environment. The invoked continuation is selected from the
coroutine environment and placed in control of the configuration.

A language supporting coroutines is presented in Figure 9.4.

In addition to the usual command continuation domain and the newly introduced corou-
tine environment domain, a domain of coroutine continuations is needed to handle the corou-
tine environment. Theesumeoperation invokes a coroutine by storing the current coroutine
continuation and extracting the invoked one. The identifier carried in the coroutine environ-
ment is set to the name of the coroutine now in control of the configuration.

9.5 UNRESTRICTED BRANCHING MECHANISMS

We can generalize the coroutine mechanism so that it does not save the continuation of the
calling coroutine when another coroutine is invoked. This creates the form of branching
known as thegoto. Without the promise to resume a coroutine at its point of release, the
domain of coroutine environments becomes unnecessary, and the coroutine continuation
domain becomes the command continuation domain. From here on, we speak not of corou-
tines, but of labeled commands; theefumel] command is now fotol].

The continuation associated with a label is kept in the usual environment, which is a
static object (unlike the coroutine environment), because the command continuation associated
with a label is determined by the label’s textual position in the program. We handle a branch
by placing the continuation associated with the destination Ilabel in control:
Clgotol] = Aeic. accesserfi¥] e.

Figure 9.5 presents a definition for a language with unrestricted branches.

So far we have ignored mutual recursion in invocations, but we must now confront the
issue if backwards branches are to be allowed. What does a branch continuation look like?
Since continuations model the remainder of a program, a continuation for a label [I] must not
only contain the denotation for the one command labeled by [I], but the denotation of the
remainder of the program that follows [I]: if [I] labels command [the continuationc;
associated with [[I] is C[C;]ec,1), wherec;, is the continuation for the commands that fol-
low [Ci].

Now consider a block witm distinct labels: peginD; 1,:Cq; 15:Cy; - - - 1,4:C,, end].

The continuations are:

¢ = (C[Ci]ecy)
C2 = (C[C,]ecs)

Cn-1= (C[Ch1lecp)
Ch= (C[Cn]] S C)
wheree = (updateenffl ;] inCmdcon{c,)
(updateenffi 5] inCmdcongc,)

188 Control as a Semantic Domain

Figure 9.4

Abstract syntax:

B& Block

D& Declaration
Ce Command

| € Identifier

B ::= D; initiate |

D ::= D;;D, | coroutine I=C

C :=C;;C;, |resumel | I:=E

Semantic algebras:

I. Command continuations
DomainCmdcont Store— Answey

II. Coroutine continuations and the environments holding them
Domainsc& Coroutine-cont Coroutine-env-= Cmdcont

ec Coroutine-enw ((Identifier— Coroutine-conkx Identifier)
Operations

quit: Coroutine-cont
err: Coroutine-cont
empty-env Identifier— Coroutine-env
empty-enw Ai. (i err), i)
initialize: Identifier— Coroutine-cont= Coroutine-env- Coroutine-env
initialize= Ai.Ac.he.let (map caller)=ein ([i c]map caller)
resume ldentifier— Coroutine-cont= Coroutine-env-= Cmdcont
resume- Ai.Ac.he.let (map caller) = ein
let map = [caller=c]map
in (mapi) (map, i)
Valuation functions:
B: Block— Cmdcont
B[D; initiate 1] = resumdl] quit (D[D](empty-enyl]))
D: Declaration— Coroutine-env- Coroutine-env
D[D4:;D2] = D[D-] ° D[D4]
D[coroutine|=C] = initialize[l] (C[C] quit)
C: Command- Coroutine-cont= Coroutine-enwv-> Cmdcont
CIC1:C] = CIC4] ° C[C]
C[resumel] = resumdl]
C[[l: =E] = Ac.reAs. c e(updatdl] (E[E]))

9.5 Unrestricted Branching Mechanismsl89

Figure 9.5

Abstract syntax:

P< Program
B& Block

D& Declaration
Ce Command
EE Expression
| € Identifier
N& Numeral

P :=B.

B ::=beginD;11:Cy;15:Cy; - - -; 1,,:C,,end
D ::=Dy;D, | constl=N | var |
C:
E:

C;;C, | I:=E |if EthenC, elseC, | while EdoC | B |gotol
=E+E, ||| N |doCresultisE | (E)

Semantic algebras:

I.-V. Natural numbers, truth values, locations, identifiers, and character strings
(as usual)

VI. Semantic outputs
Domainac Answek (OK+ Err),
whereOK= StoreandErr = String

VII.-IX. Expressible, denotable, and storable values
Domainsn& Exprvak Storable-value: Nat
de Denotable-value Nat+ Locatiort- Cmdcont Errvalue
whereErrvalue= Unit

X. Environments
Domaine& Environment (Identifier— Denotable-valupx Location
Operations
(defined in Figure 7.1)

Xl. Stores
Domains& Store= Location— Storable-value
Operations
(defined in Figure 7.1)

Xll. Command continuations
Domaince Cmdcong Store— Answer

190 Control as a Semantic Domain

Figure 9.5 (continued)

Operations
finish: Cmdcont
finish= As. inOK(s)
error: String— Cmdcont
error= AtAs.inErr(t)

XIll. Expression continuations
Domaink& Exprcont Exprval— Cmdcont
Operations

return-value Exprval— Exprcont=Cmdcont
return-value= An.k. k(n)

save-arg= (Exprcont=Cmdcont— (Exprval— Exprconj — Exprcont
save-arg= Af.Ag.AN. f(gn)

add: Exprcont= Exprval— Exprval— Cmdcont
add= Ak.Ans.An,. k(ng plus)

fetch: Location— Exprcont=Cmdcont
fetch= AL.AkAs. Kaccess I 5s

assign Location— Cmdcont= Exprcont
assign= Al.Ac.AnAs. dupdate In 3

choose Cmdcont= Cmdcont= Exprcont
choose Ac;.ACy.AN. ngreaterthan zere>c; || ¢,

Valuation functions:
P: Program— Location— Cmdcont
P[B.] = Al. B[B] (emptyenv)lfinish
B: Block — Environment= Cmdcont= Cmdcont
B[beginD; 11:Cy;15:Co; - - -5 1,:Cyend] =
redc. (fix(hctuple.((C[C1] e (ctuple} 2)),
(CIC:zle (ctuple} 3)),

(CICrlec)))il
wheree = (updateenffl 1] inCmdcongctuple| 1)
(updateenfl ,] inCmdconfctuple| 2)

(updateenffl ,] inCmdcongctuple|n) (D[D] €)) - -

)

9.5 Unrestricted Branching Mechanismsl91

Figure 9.5 (continued)

D: Declaration— Environment= Environment
(defined in Figure 7.2)

C: Command- Environment> Cmdcont= Cmdcont
C[C1;C5] = re.C[C] e C[C>]e
C[I: =E] = heAc.casesdccessenl] e) of
isNat(n) — error "const used on lhs"
[isLocatior(l) — E[[E] e(assign | ¢
[isCmdconfc) — error "label used on lhs"
[isErrvalug)) — error "lhs undeclared"
end
C[if EthenC; elseC,] = heAc.E[E] e (choosgC[C] e 9 (C[C,]e0)
Cl[while Edo C] = AeAc. fixhc. E[E] e (choosgC[C] e0) c))
C[B] =B[B]
Clgotol] = heAc.casesdccessenl] e) of
isNat(n) — error "const used as label"
[isLocatior(l) — error "var used as label"
[l isCmdconfcr) — ¢
[isErrvalug)) — error "unknown id"
end

E: Expressior—= Environment>= Exprcont= Cmdcont
E[E.1+E,] = AeAk.E[E] e (save-arg(E[E,] €) (add K)
E[I] = AeAk.casesdccesser] e) of
isNat(n) — return-value nk
[isLocatior(l) — fetch I k
[l isCmdconfc) — error "label used in expr
[isErrvalug)) — error "undeclared iden"
end
E[N] = Aeik. return-value(N[N]) k
E[doCresultisE] = AeAk.C[C] e (E[E] e R
E[(E)] = EIE]
N: Numeral= Nat (omitted)

192 Control as a Semantic Domain

(updateenffi ,] inCmdconfc,) (D[D] e)) - - -))

Eachc; possesses the environment that contains the denotations of all the labels. But to define
the environment, eacty must be defined. The mutual recursion is resolved byfithepera-
tion. The least fixed point is amtuple of continuations, one for each label. The denotation of
the entire block is the continuation associated with the first label.

You are encouraged to construct example programs and determine their denotations. A
program for computing the factorial function is given a denotation in Figure 9.6. (Assume that
semantic equationg[E*E,] and E[E{-E,] for multiplication and subtraction are added to

Figure 9.6

P[begin constA=a;var X; var TOTAL,; var FAC;
L1: X:=A; TOTAL:=1; gotoL2;
L2: while X do (TOTAL:=TOTAL=X; X:=X-1);
L3: FAC.=TOTAL
end] =

Al (fix(Actuple.
(return-value a
(assignl
(return-value one
(assign next-locth)
(ctuple}2))))),
fix(Ac. (fetchl

(choose

(fetch next-loc(i)

(save-ardfetchl)

(mult
(assign next-locth)
(fetchl
(save-ardreturn-value ong
(sub
(assignl
c)N))))
(ctuple} 3)))),
(fetch next-loc(l)
(assign(next-locr{next-locrgl)))
finish))
)) 11

9.5 Unrestricted Branching Mechanismsl93

the language. The equations have the same format as the one for addition, using operations
mult and sub respectively instead odidd) The denotation in Figure 9.6 is simplified to the
stage where all abstract syntax pieces and environment arguments have been written away.
The denotation of the factorial program is the first component of the least fixed point of a
functional; the functional maps a triple of command continuations to a triple of command con-
tinuations. Examining the functional’'s body, we see that component nuindbehe triple is

the denotation of the commands labeled by identifiein the program. A jump to labdlk

has the denotatiornc{uple| k). Each component of the tuple is a deeply nested continuation
whose actions upon the store can be read from left to right. The actions are low level and
resemble conventional assembly language instructions. This feature is exploited in the next
chapter.

9.6 THE RELATIONSHIP BETWEEN DIRECT AND
CONTINUATION SEMANTICS

A question of interest is the exact relationship between a language’s direct semantics
definition and its continuation semantics definition. We would like to prove that the two
definitions map the same program to equal denotations. But, since the internal structures of the
semantics definitions are so dissimilar, the proof can be quite difficult. A related question is
whether or not we can derive a continuation semantics definition for a language from its direct
semantics definition. Both questions are studied in the following example.

Let Cp: Command- Store— Store be a valuation function written in direct semantics
style. Say that we desire a valuation functi@: Command— Cmdcont— Cmdcont
Cmdcont= Store¢ — Storg, in continuation style such thap is equivalent toCc. The
equivalence can be stated @g[C] = Cc[C](As.9. But this property will be difficult to
prove by induction. Recall that in Section 9.1 we saw the for@&fC] = Ac.As. qf(s)) for a
terminating command [C] that perfornfigo the store. Sinc€p[C] describes [C]'’s actions
in isolation, the equality:

CclClcs=c(Cp[CT)

holds. This equality generalizes the earlier definition of equivalence; it is catedgruence,
and two definitions that satisfy a congruence are calteyruent.

What about a command that might not terminate? T@gfiC] s might be |, so what
should C[C]cs be? If we requirestrict continuations, then the congruence still holds:
Ccl[Clcs=c(Cp[Cls) =c(]) = |. Sethiand Tang (1980) suggest that a continuation seman-
tics for a simple language be derived from its direct semantics definitiordddining
Cc[C] cs=c(Cp[C] s) for each construct [C] in the language. We then apply an inductive
hypothesis to simplific(Cp[[C] s) into a more satisfactory form. Some derivations follow.

First, forCp[C1;C5] = As.Cp[C2](Cp[C4]s), define:

CclC1;C2o] =rcrs. dCp[C1;Co]9)
=AcAs. dCp[Co](CplC1]s)

SinceCp[C,]s€ Store, we can use the inductive hypothesis tE{[C]cs=c(Cp[C2]9)

194 Control as a Semantic Domain

to obtain the value.c.As.Cc[C,]c(Cp[C1]s). But Cc[Cy]cis a command continuation, so
we apply the inductive hypothesis for [Cto obtain’Ac.As.Cc[C1] (Cc[C,]c)s. By exten-
sionality and the inductive hypothesis ti@&t[C,] is strict, we obtain:

CclC1:Ca] = CclCa] ° CclCo]
Second, foCp[if BthenC, elseC;] = As.B[B] s—Cp[C1]s] Cp[C.]s, we ddine:

Cclif BthenC, elseC,] = AcAs. Cp[if B thenC, elseC;]s)
=AcAs. qB[B] s— Cp[Ci]s] CplC2l9)

B[B]s is a defined truth value, so a cases analysis gives the value
AcAs.B[B] s— ¢(Cp[C1]9) [c(Cpl[C-]s). By the inductive hypothesis for [and [C],
we obtain:

Cclif BthenC, elseC,] = Ac.As.B[B] s— Cc[Ci]csf] Cc[C.lcs

Deriving the continuation semantics for wahile-loop is a bit more involved. For
Cp[while BdoC] = fix(AMf.As.B[B] s—f(Cp[C] 9)[| S), we define:

Cc[while BdoC] = AcAs. dCp[while BdoC]s)
The presence dix thwarts our attempts at simplification. Let:
Fp = M.As.B[B] s—=f(Cp[C] 9] s

We hope to find a corresponding functioiiig such thatfix Fc)c s= c((fixFp)s). Even though
we haven't a clue as to wh&t: should be, we begin constructing a fixed point induction proof
of this equality and derivEc as we go. The admissible predicate we use is:

P(fc, fp) = “for all c€ Cmdcontandse Store, (fc ¢ 9 = c(fp 9)”

wherefc: Cmdcont> Cmdcontandfp: Store — Store.

For the basis step, we hafie= (Ac.As.|) andfp = (As.|); the proof follows immediately
from strictness. For the inductive step, the inductive hypothesfg s = c(fp S); we wish to
prove that E¢ fc) ¢ s= ¢((Fp fp)s), derivingF¢ in the process. We derive:

c((Fp fp)9)
= c((As.B[B] s = fp(CplCl9) [99)
=c(B[B] s— fp(Cp[Cl9) [9

whensis proper. This equals:

B[B] s— c(fo (CpIC]9) 1 (c9, by distributingc across the conditional
= B[B] s— (fc ¢)(Cp[C] 9 [(c9, by the inductive hypothesis
= B[B] s— CcICI(fc)s]l (c9)

by the structural induction hypothesis @ [C], becausef: c) € Cmdcont If we let:

Fc = AgAcAs.B[B] s— Cc[Cl(g0s] (c9

9.6 The Relationship between Direct and Continuation Semanti&s

then we are finished:
Cclwhile BdoC] = fix(Ag.Ac.As.B[B] s— Cc[C](g o) s[l (c9)

The definition ofwhile used in Figure 9.5 can be proved equal to this one with another
fixed point induction proof.

The continuation semantic3. is congruent taCp because it was defined directly from
the congruence predicate. The proof of congruence is just the derivation steps read backwards.
Few congruences between semantic definitions are as easy to prove as the one given here.
Milne and Strachey (1976), Reynolds (1974b), and Stoy (1981) give examples of nontrivial
semantics definitions and proofs of congruence.

SUGGESTED READINGS

Continuations: Abdali 1975; Jensen 1978; Mazurkiewicz 1971; Milne & Strachey 1976;
Strachey & Wadsworth 1974; Stoy 1977

Control mechanisms: Bjdrner & Jones 1982; Friedman et al. 1984; Jones 1982b; Reynolds
1972; Strachey & Wadsworth 1974

Congruences between definitions:Meyer & Wand 1985; Morris 1973; Milne & Strachey
1976; Royer 1985; Reynolds 1974b; Sethi & Tang 1980; Stoy 1981

EXERCISES

1. Add to the syntax of the language in Figure 7.2 the comneadiithlock, which causes a
forward branch to the end of the current block.

a. Without using continuations, integrate #atblock construct into the semantics with
as little fuss as possible. (Hint: adjust theststoredomain andcheckoperation.)

b. Rewrite the semantics in continuation style and haeditblock by discarding the
current continuation and replacing it by another.

c. Repeat parts a and b for aritloop command that causes a branch out of the inner-
most loop; for ajump L command that causes a forward branch to a command
labeled by identifiet..

2. Convert the operations in thdat, Environmentand Store algebras of Figure 7.1 into
continuation style.

a. Modify theaccessoperation so that an access of an uninitialized storage cell leads
directly to an error message.

b. Introduce a division operation that handles division by zero with an error message.

c. Rewrite the semantic equations in Figure 7.2 to use the new algebras.

3. A language’s control features can be determined from the continuation domains that it

196 Control as a Semantic Domain

uses.

a.

Propose the forms of branching mechanisms that will likely appear when a semantic
definition uses each of the following domains:

i. Declaration-cont Environment= Cmdcont

ii. Denotable-value-cort Denotable-value> Cmdcont
iii. Nat-cont= Nat— Cmdcont

iv. Location-cont Location— Exprcont

A reasonable functionality for the continuation version of natural number addition is
add: Nat— Nat-cont For each of parts i through iv, propose operations that use the
continuation domain defined.

4. Newcomers to the continuation semantics method often remark that the denotation of a
program appears to be “built backwards.”

a. How does this idea relate to the loading of a control stack prior to interpretation? To

b.

the compilation of a program?

Notice that the semantic equations of Figure 9.5 do not mentionStongvalued
objects. Consider replacing tli@&mdcontalgebra by a version of th8torealgebra;
formulate operations for the domai@mdcont Store Do programs in the new
semantics “compute backwards”?

Jensen (1978) noted a strong resemblance between continuation style semantics and
weakest precondition semantics (Dijkstra 1976). Let Pred be the syntax domain of
predicate calculus expressions. The symbols “B” ang’‘stand for elements of

Pred. Here is the weakest precondition semantics of a small language:

Wp([C1:Cz], p) = wp([C41, wp([C-l. p))
wp([l:=E], p) = [E/l]p
wp([[if Bthen C, elseC,], p) = ([B] andwp([C+], p))
or ((nofB]) andwp([C-], p))
wp([while Bdo C], p) = (there exists= 0 such that; (p))
whereHgq(p) = (not([[B]) andp)
andH,1(p) = wp([if B thenCelse skid, H;(p))
and wp([skip], p)=p

Now consider the continuation semantics of the language. In particular, let
P: Pred— Predicate be the wvaluation function for predicates, where
Predicate= Store— Trr andTr= Unit|. Lettrue: T be () andfalse: Tr: be | . Define
Cmdcont Predicate Using the semantic equations in Section 9.1, show that

CICI p= P(wp([CT, p))-

5. Rework the semantics of Figure 9.5 so that a distinction is made between compile-time
errors and run-time computations. In particular, create the following domains:

Pgmcont Compile-err+ (Location— Computation
Cmdcont Compile-err+ Computation

10.

11.

12.

Exercises 197

Exprcont= Compile-err+ (Expressible-value> Computatiof
Compile-err= String

Computation= Store— Answer

Answer= (Store+ Run-er),

Run-err= String

Formulate the semantics so that a denotable or expressible value error in a program [P]
implies thatP[P] = inCompile-er(t), for some messageand a type-correct program has
denotatiorP[P] = in(Location— Computatio(f).

Design an imperative language that establishes control at the expression level but not at
the command level. That is, tHevaluation function uses expression continuations, but
the C valuation function is in direct semantics style. What pragmatic advantages and
disadvantages do you see?

Apply the principles of abstraction, parameterization, correspondence, and qualification
to the language in Figure 9.5.

PL/1 supports exception handlers that are invoked by machine level faults. For example,
a user can code the handlesr{zerodivide doC], which is raised automatically when a
division by zero occurs.

a. Add the zero division exception handler to the language defined by Figures 9.2 and
9.5.

b. The user can disable an exception handler by the commamt],[where [I] is the
name of an exception handler, either built in or user defined. Add this feature to the
language.

In ML, exception handlers are dynamically scoped. Revise the definition in Figure 9.2 to
use dynamic scoping of handlers. How does this affect the raising of exceptions and exits
from blocks? (Consider exceptions raised from within invoked procedures.)

One form of coroutine structure places a hierarchy on the coroutines; a coroutine can
“own” other coroutines. Call these thearentandchild coroutines, respectively. Child
coroutines are declared local to the parent, and only a parent can call a child. A child
coroutine can pause and return control to its parent but can-not resume its siblings or
other nonrelated coroutines. Design a language with hierarchical coroutines.

Modify the semantics of the backtracking language in Figure 9.3 so that the commands
can recursively invoke one another.

Extend the list processing language in Figure 7.5 to allow jumps in expression evalua-
tion. Augment the syntax of expressions by:

E ::= - |catchE |throw E

The [catchE] construct is the intended destination of arthrpw E:] evaluated within

198 Control as a Semantic Domain

13.

14.

15.

[E]. The valuecatch produces is the value of [[E Evaluation of [throw E] aborts nor-
mal evaluation and the value of [E] is communicated to the nearest enclosaigh].
Give the semantics of these constructs.

Derive the continuation semantics corresponding to the direct semantics of expressions,
using the method in Section 9.6 and the congruéidiE=] k s= k(Ep [E] 9) s, for:

a. TheE valuation function in Figure 5.2.
b. TheE valuation function in Figure 7.5.

Prove that the direct and continuation semantics of the language in Section 9.6 are also
congruent in an operational sense: prove tBafC] s simplifies tos iff Cc[C]cs
simplifies toc(s).

Consider the conditions under which a designer uses continuation domains in a language
definition.

a. What motivates their introduction into the definition?

b. Under what conditions should some valuation functions map to continuations and
others to noncontinuation values?

c. What characteristics of a languagmistresult if continuation domains are placed in
the language definition?

d. Are languages with continuation definitions easier to reason about (e.g., in program
equivalence proofs) than languages with direct definitions?

e. What freedom of choice of implementations is lost when continuation domains are
used?

Chapter 10

Implementation of Denotational Definitions

A language’s implementation should be guided by its semantics definition. In this chapter, we

survey techniques for deriving a compiler from a language’s semantics and examine some of
the existing automated tools for compiler generation. We also consider issues regarding the
correctness of implementations.

10.1 A GENERAL METHOD OF IMPLEMENTATION

In the previous chapters, we saw many examples of programs that were mapped to their dento-
tations and simplified to answers. The simplifications resemble the computational steps that
occur in a conventional implementation. They suggest a simple, general implementation tech-
nique: treat the semantic notation as a “machine language” and implement an evaluator for
the semantic notation. The denotational equations translate a program to its denotation, and the
evaluator applies simplification rules to the denotation until all possible simplifications are
performed.

As an example, consider the semantic definition in Figure 5.2. The translation of the pro-
gram [Z=A+1] is the expression:

P[Z:=A+1] =

An.lets= (updatdA] n newstorgin
lets = (As. updat§Z] (As.(As. accesfA] s)s plus(rs. ongs)s 9s
in (acces§Z] s)

(We have not bothered to expand tBeore algebra operators to their underlying function
forms, e.g.,accessto (Ai.As. {i)). This keeps the overall expression readable. Atore

level operations are often treated specially.) The expression is applied to its run-time data, say
the numberfour, and is given to the evaluator, which applies the simplification rules. The
numberfiveis the simplified result and is the output of the evaluator.

Let’s call this approach theompile-evaluatenethod. There is a simple variation on the
method. The example in Section 5.1 suggests that we can simultaneously translate a program
into its denotation and evaluate it with its run-time arguments. For example, the expression
P[Z:=A+1] four is translated to the intermediate form:

(An.let s= (updatdA] n newstorgin
lets= C[Z:=A+1]sin (acces§Z] s))four

which is simplified to the expression:

199

200 Implementation of Denotational Definitions

lets = C[Z:=A+1]([[A] t=four]newstorgin (acces§Z] s)
which is translated to the expression:

lets = (As. updat§Z] E[A +1]s 9([[A] + four]newstorg¢in (acces§Z] s)
which is simplified to:

let s = updatdZ] (E[A +1]([[A] = fourlnewstorg) ([[A] = four]newstorg
in (acces§Z] <)

and so on. The result is agdime. This is an interpreter approach; the denotational definition
and evaluator interact to map a source program directly to its output value. The compile-
evaluate method is more commonly used by the existing systems that implement semantic
definitions. It is closer in spirit to a conventional compiler-based system and seems to be more
amenable to optimizations.

10.1.1 The SIS and SPS Systems

Two compiler generator systems based on the compile-evaluate method are Mosses’s Seman-
tics Implementation System (SIS) and Wand’s Semantics Prototyping System (SPS). SIS was

the first compiler generating system based on denotational semantics. Figure 10.1 shows the
components and data flow of the system.

SIS consists of a parser generator and an encoder generator. The parser generator pro-
duces an SLR(1) parser from an input BNF definition coded in a notation called GRAM. The
semantic definition, coded in DSL, is read by the encoder generator, which produces an
encodey that is, a translator from abstract syntax trees to “LAMB-denotations.” A source
program is parsed by the parser and is translated by the encoder. The source program’s denota-
tion plus its input values are passed to the evaluator for simplification. The definitions of run-
time operations (such as the operations fromS3terealgebra) are supplied at this time. The
evaluator uses aall-by-needsimplification strategy: an expressiokx(M)N simplifies toM,
and the binding X, N) is retained by the evaluator in an environment table. When an
occurrence ok is encountered i, N is fetched from the table, simplified to its valugand
used forx. The binding &,v) replacesX, N) in the table. This strategy handles combinations
more efficiently than the usual textual substitution method.

SIS is coded in BCPL. It has been used to implement a number of test languages. Its
strengths include its simplicity and generality— virtually any denotational definition can be
implemented using SIS. The system’s primary weakness is its inefficiency: the generated
compilers are large and the compiled programs run slowly. Nonetheless, SIS is an important
example of an automated system that producesreect compiler from a language’s formal
specification. It has inspired many researchers to develop more efficient and specialized sys-
tems.

Wand’'s SPS system is based on existing software tools. The system’s parser generator is

10.1.1 The SIS and SPS Systen2§1

Figure 10.1

source program

syntax definition parser generator parser
written in GRAM

abstract syntax tree

semantic definition encoder generator encoder
written in DSL

denotation in LAMB

LAMB definitions of
run-time functions

evaluator output
input data

the YACC parser generator. A language definition is stated as a YACC-coded grammar with
the denotational semantics equations appended to the grammar rules. The semantics equations
are coded in Scheme, a LISP-like programming language that resembles function notation.
The SPS evaluator is just the Scheme interpreter, which evaluates denotations relatively
efficiently. SPS also uses a type checker that validates the domain definitions and semantic
equations for well-definedness. (SIS does not possess this feature, so a user must carefully
hand check the definition.) Like SIS, SPS has been used on a number of test languages. It
demonstrates how a useful generator system can be neatly built from software tools.

10.2 STATIC SEMANTICS PROCESSING

The compiler described in the previous section generates denotations that contain a large
number of trivial bindings. Here is an example:

C[A:=0;B:=A+1] =

202 Implementation of Denotational Definitions

As.(As. updatgB] (As.(As. accesfA] s)splus(rs.ongs)ss)
((As. updat§A] (As. zergss)s)

Trivial bindings of the form As. Bs should be simplified td& prior to run-time. We call these
compile-time simplificationgartial evaluationor evenstatic semantics processingstatic
semantics processing performs those evaluation steps that are not dependent on run-time
values. In traditional compilers, static semantics processing includes declaration processing,
type checking, and constant folding.

How do we determine which simplifications to perform? We call an expressifnozen
if it can be simplified before run-time. frozenexpression may not be simplified. Once we
decide which semantic algebras define run-time values, we freeze the operations in those alge-
bras. An example of an algebra that is typically frozen is$ierealgebra. The algebras of
truth values and numbers are frozen if the evaluation of Boolean and arithmetic expressions is
left until run-time. (In compilers that do constant foldirigr,andNat are unfrozen.)

During static semantics processing, we simplify each subexpression of a denotation as far
as possible until we encounter a frozen operation; then we are forced to stop. Say that the
Store and Nat algebras are frozen in the above example. Then the subexpression
(As. update[A] (As. zergss)s simplifies to (pdate[A] zeros), but no further, because
updateis a frozen operation. The simplified subexpression itself is now “frozen.” Frozen
subexpressions impact other simplifications; a combinattonM)N, whereN is a frozen
subexpression, is not simplified. (BMtitself may be simplified.) Also, some static semantics
simplifiers refuse to simplify Xx. M)N if unfrozen N is a nonconstant or nonidentifier and
occurs free inM more than once, for the resulting expression would be larger, not smaller,
than the original.

For the above example with tf8toreandNat algebras frozen, static semantics produces:

As.(As.updat§B] ((acces§A] s) plusong s) (updatgfA] zeros)

which is the expected “machine code” for the command.

Static semantics processing is most useful for simplifying denotations that contain
environment arguments. Recall the block-structured language in Section 7.1. Environments
process declarations, reserve storage, and map identifiers to denotable values. Environment-
related actions are traditionally performed at compile-time. The example in that section
showed that the denotation of a program can be simplified to a point where all references to
environment arguments disappear. The simplifications are exactly those that would be per-
formed during static semantics processing, becauséritieonmentlgebra is unfrozen.

The SIS system does static semantics processing. However, SIS does not freeze any
expressions; it simplifies every possible subexpression. The method works because the
definitions of the frozen operators (such as 8terebased ones) are not supplied until run-
time. Thus, any expression using a run-time operation is not simplifiable.

10.3 The Structure of the Evaluator203

10.3 THE STRUCTURE OF THE EVALUATOR

We use the equalities in Section 3.5 to simplify expressions. From here on, we treat the equal-
ities asrewriting rules.An equalityM=N induces a rewriting rul® = N; an occurrence dfl

in an expression isesduced(simplified) toN by the rule. For examplejk. M)N = [N/X]M is

a rewriting rule, and is in fact a rather famous one, calledftitale. An expression whose
structure matches the left hand side of a rewriting rule i®dex,and the expression that
results from reducing a redex is called @sntractum. We write E; = E, if expressionE;
rewrites toE, in one step and writ&; =" E, if zero or more steps are used. An expression
that contains no redexes ismormal form. We say that an expressitias a normal formf it

can be reduced to an expression in normal form. Not all expressions have normal forms (e.g.,
(AX.xX(Ax.x%), wherexe G=G— G). An important feature of the rules for function notation

is that if an expression does have a normal form then it is unique. This property follows from
the confluencgChurch-Rosser) property: E; =" E, andE; =" E3, then someE, exists

such thaE, =" E, andE; =" E,.

An evaluator applies rewriting rules to its argument until a normal form (if it exists) is
reached. The evaluator should apply the rules in a fashion that is sufficient for achieving a
normal form. (For example)f.zerg ((Ax.xX (Ax.xX) has the normal fornzero, but per-
petually reducing the argumentq. x Y(AX. XX will never produce it.) A strategy sufficient for
reducing an expression to normal form is tleEmost-outermost methodat each reduction
step, we reduce the leftmost redex that is not contained within another redex. (We make the
statement that the leftmost-outermost method is sufficient with the understanding that a combi-
nation g.x. M)N, whereN itself is a function, argument combination, should be “read back-
wards” as “N(M.xA).” Recall that a strict abstraction requires a proper argument, hence its
argument must be reduced until its proper structure— a pair, injection, abstraction, number, or
whatever— appears. Then tfgeduction is made.) Here is a leftmost-outermost reduction:

(MX.(xX)zerg((hy.(Az. 2)((Ax. X Y(AX.X X))
= (((Ay- (Az. 2)((Ax. xQY(Ax. x X)) ((hy. (Az. 2)((AX. X Y(AX. X X)))zero

= ((Az.2 ((Ay.(Az. D)((AX. XX (AX.XX)))zero
= ((Az.2 (Az.2)zero

= (Az.2zero
= zero

One way of implementing the leftmost-outermost reduction strategy is to represent the
expression to be reduced as a tree. The evaluator does a left-to-right, depth-first traversal of the
tree. When a node in the tree is visited, the evaluator determines if the subtree whose root is
the visited node is a redex. Ifitis not, the evaluator visits the next node in its traversal. But if
it is, the evaluator removes the tree, does the reduction, and inserts the contractum for the
redex. The next node visited is the parent node of the contractum’s, for the evaluator must
backtrack up the tree to see if the insertion of the contractum created a new outermost redex.

An inefficiency of the tree reduction method lies in its reduction of a redexM)N:
occurrences oN must be inserted in place of occurrencesxah M in the contractum. A
traversal ofM’s tree is required for the insertions. Théw s traversed a second time to reduce
its redexes. These two traversals can be combined into one: the evaluator can ilséot an
anx when it encounters during its traversal oM for reductions. In the meantime, the binding

204 Implementation of Denotational Definitions

of x to N can be kept in an environment. Agmvironmenis a collection of identifier, expres-
sion pairs, chained together in the shape of an inverted tree. The environment holds the argu-
ments bound to identifiers as a resultfefeductions. Every node in the expression tree has a
pointer into the environment. The pointer points to a linked list (that is, a path in the inverted
tree) of the bindings that belong to the node. The inverted tree structure of the environment
results because distinct nodes sometimes share bindings in their lists.

When a redeR= (Ax. M)N reduces tdM, the binding &, N) is chained to the front of the
list pointed to byM’s environment pointerM’s new pointer points to the binding,(N) fol-
lowed by the previous list of bindings. When a free occurrenceisivisited inM, the evalua-
tor follows the environment pointer attachedxdo find the first pair X, N) in the chain of
bindings.N (andits pointer) replacex in the expression. A clever evaluator evaluatdsy
leavingN in its place in the environment and simplifying it there. OMteeduces to a proper
value, that value is copied over into the expression treésiplace. Subsequent lookupsof
in the environment find the reduced value. This approach is knowalbby-needevaluation.

10.3.1 A Stack-Based Evaluator

The tree traversal method is slow and bulky. There is too much copying of contractums in
place of redexes into the expression tree, and there is too much backtracking during tree
traversal. Further, the representation of the expression as a tree occupies a wasteful amount of
space. We can represent the leftmost-outermost reduction of an expression in a more conven-
tional form. We use a stack-based machine as an evaluator; an expression is translated into a
sequence of machine instructions that describes a leftmost-outermost reduction of the expres-
sion. The traversal and reduction steps can be translated into machine code because function
expressions are statically scoped, so environment maintenance is routine, and because the
traversal path through the expression can be calculated from the structure of the expression.
Figure 10.2 shows the stack machine. We call it\WW&C-machinédecause it possesses three
components:

1. Atemporary value stack, which holds subexpressions that have been reduced to proper
values and expressions whose evaluation has been postponed.

2. An environmentg, which stacks environment pointers and establishes the scope of the
current expression being reduced.

3. A code stackg, which holds the machine instructions for the reduction. Rather than
using an instruction counter, we treat the instructions as a stack. The top instruction on
the stack is the one executed, and a stack pop corresponds to an increment of the instruc-
tion counter to the next instruction in the code.

We represent a machine configuration as a tripled). Each of the three components in
the configuration is represented in the foana,: - - -:a,, wherea; is the top value on the
component’s stack.

Two of the machine’s key data structures are the environment pointer and the closure. An
environment pointeis a pointer value to a linked list of identifier, value bindings. (Read the
@ symbol as saying “a pointer to.””) All the bindings are kept in the environment tree, which

10.3.1 A Stack-Based Evaluator205

Figure 10.2

VEC-machine components:

vE Temporaryvaluestack= Value®

e€ Environmen& Environment-pointer

c& Code-stack Instructiort

where

Value= Primitive-value+ Closure

a€ Primitive-value= Nat+ Tr+ - - -

(ar, p) € Closure= Instructiori” x Environment-pointer

p € Environment-pointes @((Identifierx Valuex Environment-pointgr+ nil)

Instruction= pushclosur@nstructiori’) + pushcongPrimitive-valug +
call + return+ pusk{Identifier) + bind(ldentifier) + Primitive-operator
tes(Instructiori x Instructiori)

Instruction interpretation (note: the operator *:” stands for stackg:

(1) % p.e pushclosurecc = (a,p)v pe c
(2) v e pushconstk=k:v e ¢

3) (o, pv e calc = v pe oac

4) v pe returmc = v e ¢

(5) v e pushx = av e ¢c

wherea & Primitive-value a= lookup xthd @
andlookupxp=let (i, r, p) = p@in if i=x then r else lookup xp

(6) v e pushx = v pie ac
where ¢, p) € Closure (o, p)=lookupx(hd g
(7 rv pe bindxc = v pue cC
wherepr= @(X, 1, p)
(8) a,;"--aqv e fc = av e c
where fa; - - -a,)=2a
(9) trueev e tedo,pf)c = v e ac

(10)falsev e testa,p)ic = v e fic

has the structure described in the previous section and is not explicitly depicted in the figure.

206 Implementation of Denotational Definitions

A closurerepresents an expression that has not been reduced but must be saved for later use.
Both the instructions for the expression and its environment pointer must be kept in the clo-
sure. Acall instruction activates the closure’s code; that is, it initiates the expression’s evalua-
tion.

The operation of the machine is expressed with rewriting rules. A rule of the form
vV e insc = Vi @ © shows the effect of the instructions on the machine’s three
components. Here is a brief explanation of the instructions. piehclosureinstruction
creates a closure out of its code argument. The current environment pointer establishes the
scope of the code, so it is included in the closure (see rule 1). A real implementation would
not store the code in the closure but would store a pointer to where the code resides in the pro-
gram store. Apushconsinstruction pushes its primitive value argument onto the value stack
(see rule 2). Theall instruction activates the closure that resides at the top of the value stack.
The closure’s code is loaded onto the code stack, and its environment pointer is pushed onto
the environment (see rule 3). A hardware implementation would jump to the first instruction
in the closure’s code rather than copy the code into a stackrdthen instruction cleans up
after a call by popping the top pointer off the environment stack (see rule 4). A hardware
implementation would reset the instruction counter as well. pbsh instruction does an
environment lookup to find the value bound to its argument. The lookup is done through the
linked list of bindings that the active environment pointer marks. In the case that the argu-
mentx is bound to a primitive value (rule 5), the value is placed onto the value stackis If
bound to a closure (rule 6), the closure is invoked so that the argument can be reduced. The
bind instruction augments the active environment by binding its argument to the top value on
the value stack (see rule 7). A primitive operdttakes its arguments from the value stack and
places its result there (see rule 8). Tthetinstruction is a conditional branch and operates in
the expected way (see rules 9 and 10). A hardware implementation would use branches to
jump around the clause not selected.

Figure 10.3 defines the code generation riiag-unction-Expr— Instructiori’ for map-
ping a function expression into a sequence of instructions for doing a leftmost-outermost
reduction. The leftmost-outermost strategy is easy to discern; con$ifié; E,)]: the

Figure 10.3

TI(E; E)] = pushclosuréTl [E,]: return): T[E4]: call
TIAx. E] = pushclosuréind[x]: T[E]: return)
T[Ax. E] = pushclosurécall: bind[x]: T[E]: return)
TIX] = push[x]

T[K] = pushconstk

TI(fEL - "E)] =TIED: - - T[EAD: f

T[E;—=Ex [B3] = T[E4]: tes(T[E:], T[Ez])

10.3.1 A Stack-Based Evaluator207

generated code says to postpone the traverds} tfy creating a closure and placing it on the
value stack. The code fdt;, the left component of the combination, is evaluated fiEst's
code will (ultimately) create a closure that represents an abstraction. This closure will also be
pushed onto the value stack. Ttal instruction invokes the closure representing the abstrac-
tion. Studying the translation of abstractions, we see that the code in an abstraction’s closure
binds the top value on the value stack to the abstraction’s identifier. In the case of a nonstrict
abstraction, a closure is bound. In the case of a strict abstraction, the closure on the value
stack is first invoked so that a proper value is calculated and placed onto the value stack, and
then the argument is bound. The translations of the other constructs are straightforward.
Figure 10.3 omitted the translations of product and sum elements; these are left as an
exercise. A translation of an expression is given in Figure 10.4. The code in the figure can be
improved fairly easily: lepopbindingbe a machine instruction with the action:

v pe popbindingc = v pue G wherep=@X,r, pr)
Then a combination’s code can be improved to:

TI(AX. E)E,] = pushclosur€T[E,]: return): bind x T[E;]: popbinding
TI(M.E)Ep] = T[E2]: bindx T[E;]: popbinding

eliminating many of theushclosure, callandreturninstructions.
We should prove that the translated code for a function expression does indeed express a
leftmost-outermost reduction. We will say that the machine is

faithful to the reduction rules if the computation taken by the machine on a program
corresponds to a reduction on the original function expression. Indeed, the VEC-machine is
faithful to the rules of function notation. The proof is long, but here is an outline of it. First,
we define a mappingUnload: VEC-machine= Function-Expr that maps a machine
configuation back to a function expression. Then we prove: forEa Function-Expr

(nil pp T[E]J) =" (vec) implies E =" UnloadVv ec), wherep, = @nil. The proof is an
Figure 10.4

TI(Ay. zerg((Ax. xY(AX.xX)] =

let A be T[(AX.xX] =
pushclosuréind x
pushclosuréush xreturn):
push xcall: return)

in

pushclosuré

pushclosuré\: return): A: call):
pushclosuréind y. pushconst zetaeturn): call

208 Implementation of Denotational Definitions

induction on the number of machine moves. The basis, zero moves, is the proof that
Unloadnil pg T[E]) = E; the inductive step follows from the proof that€c) = (v e ¢)
implies Unloadv e c) =" Unloadv: e ¢). Unloads definition and the proof are left as exer-
cises.

Another aspect of the correctness of the VEC-machine is its termination properties: does
the machine produce a completely simplified answer exactly when the reduction rules do?
Actually, the VEC-machine is conservative. It ceases evaluation on an abstraction when the
abstraction has no argument; the abstraction’s body is not simplified. Nonetheless, the
machinedoesreduce to final answers those terms that reduce to nonabstraction (hereafter
calledfirst-order) values. The VEC-machine resembles a real-life machine in this regard.

The VEC-machine evaluates function expressions more efficiently than the reduction
rules because it uses its stacks to hold intermediate values. Rather than searching through the
expression for a redex, the code deterministically traverses through the expression until (the
code for) a redex appears on the top of thetack. Simplified values are moved to the
stack— substitutions into the expression are never made.

Here is the current version of the compile-evaluate method that we have developed. The
compile step is:

1. Map aprogram P to its denotati&fiP].
2. Perform static semantics analysiskfi*], producing a denotatiod.
3. Mapdto its machine cod&[d].

The evaluate step is: load’[d] into the VEC-machine, creating a configuration
(nil @nil T[d]), and run the machine to a final configuratiarv(e nil). The answer is.

10.3.2 PSP and Appel's System

Paulson’s Semantic Processor (PSP) system generates compilers that map programs into stack
machine code. The PSP evaluator resembles the stack architecture just developed. In PSP, a
language is defined with semantic grammars, a hybrid of denotational semantics and attribute
grammars. The semantic grammar for a language is input tgrdmmmar analyzerwhich
produces a language description file containing an LALR(1) parse table and the semantic
equations for the language. Figure 10.5 shows the components.

The universal translator uses the language description file to compile a source program.
A source program is parsed, mapped to its function expression form, partially evaluated, and
mapped to stack machine code.

The static semantics stage in PSP does more than just partial evaluation. It also enforces
contextual constraints (such as data type compatibility) that are specified in the semantic
grammar. Efficient representations of abstractions and data values (like stores) are created.
PSP has been used to generate a compiler for a large subset of Pascal; the generated compiler
runs roughly 25 times slower than a handwritten one bshiallerthan the handwritten com-
piler.

Appel's compiler-generating system produces compilers that translate source programs to
register machine code. Static semantics and code generation are simultaneously performed by

10.4 Combinator-Based Semantic Notation09

Figure 10.5
source
program
syntax and grammar language universal
semantics definition analyzer description translator:
in semantic grammar file parsing,
form static semantics,

code generation

stack machine code

input data stack output
machine

areducermodule, which completely reduces a denotation down to an empty expression. Dur-
ing the process, certain simplifications cause machine code to be emitted as a side effect. For
example, the reducer reduces the expressipddtei n s) to s, emitting the code §i]:=n" as

a side effect. Appel’s system is intended as a tool for generating quality code for conventional
machines.

10.4 COMBINATOR-BASED SEMANTIC NOTATIONS

It is difficult to develop an efficient evaluator for function notation because the notation is so
general. In particular, the binding of values to identifiers requires costly time- and space-
consuming environment maintenance and lookups. A number of researchers have designed
notations for specialized classes of languages. These notations makecosebiriatorsthat

have efficient evaluations.

A combinatoris a function expression that has no free identifiers. A combinator is nor-
mally given a name, and the name is used in place of the expression. As an example, let's use
the name ; for the expressiokf{.Af,.As. H(f; S)). HenceE,; E; is (As. B(E; 9)). The advan-
tage of using the combinator is that a complicated binding and composition structure is hidden
within the combinator. The expressi@f; E, is easier to read than the function expression
form. The (derived) rewriting rulel; E;) s = E,(E;S) expresses the binding of argument to
abstraction in a fashion that eliminates the binding identifier. If combinators are used

210 Implementation of Denotational Definitions

exclusively as the semantic notation, then the binding identifiers (and their maintenance)
disappear altogether.

Let’s design a combinator set for writing definitions of simple imperative languages. The
combinators will manipulate stores and temporary value stacks. Underlying the notation are
two semantic algebras: th8tore algebra and the algebra of lists of expressible values,
EVlist= (Nat+Tr)*. An expressible value list, store pair is calledtate. All expressions writ-
ten in the combinator notation are mappings from states to states. The combinators are ;, !,
cond andskip. Here are their rewriting rules:

(E1; E2)(v, 8) = Ex(Eq(v, 9)

fl(vy: - - Vg, 9) = (v, 9)
wheref: Exprval x - - -x Exprval,x Store— Exprvalis (fvy - - "V, =w
fI(vy: - - vy, 9) = (v, o)

wheref: Exprval x - - -x Exprval, x Store— Storeis (fv; - - "V, 9 =5
condE;, E>)(truelv, s) = E;(v, 9)

condE,, Ey)(falsev, s) = E;,(v, 9)

skipv,) = (v, 9)

The expressiork;; E, composes the state-altering actionsEgfwith those ofE,. The
expressiorf! is a primitive state-altering action. ffrequiresn arguments (plus the store), the
top n arguments are taken off the expressible value list and are givér(along with the
store). The answer is pushed onto the list.f @ffoduces a store for an answer, it replaces the
existing one.) The expressiaondE;, E,) selects one of its two argument values based on the
value at the front of the expressible value Istjpis the null expression.

The combinators must be assigned denotations. Then they can be used in semantic
definitions and their rewriting rules can be proved sound. The denotatioB, &, is
My, 9).let (», s) = E1(v, §) in Ex(w,). The soundness of its rewriting rule easily follows. The
denotations and soundness proofs for the other combinators are left as exercises. An important
feature of the rewriting rules is that binding identifiers are never used— the statey,shirs(
passed from combinator to combinator. This suggests that a machine for the combinator
language be configured as\(s), wherec is a combinator expressioty;c,; - - *;C,. The
machine language consists of thecond,andskip operators, and the actions of the machine
are defined by the rewriting rules. For examplen(dE,, E;);c truev s) = (E;;c v S). By
restricting the semantic notation to simple combinators, we obtain a simple evaluator. An
imperative language is defined with the combinators in Figure 10.6.

The example combinator notation is ideally suited to expressing the sequencing and
updating concepts in a language, but it is inadequate for expressing many other semantic con-
cepts. There are no combinators for identifier declarations, recursively defined values, and
nonstandard control forms. A number of researchers, most notably Mosses, are developing
truly general combinator notations.

10.4.1 The Plumb and CERES Systen241

Figure 10.6

C: Command- State— State
C[C1;Cz] = CIC4]; CIC]
C[I: =E] = E[E]; (updatdI] !
C[if B then C; elseC,] = B[B]; condC[C], CIC-])
C[while B do C] = wh
wherewh= B[B]; cond C[C]; wh, skip)

E : Expression- State— State
E[E.+E-] = E[E.]; E[E:]; add!
E[l] = acces§I]!

E[N] = N[NJ!

10.4.1 The Plumb and CERES Systems

Sethi’'s Plumb and Christiansen and Jones’s CERES systems both rely on combinator-based
semantic notations. The Plumb system uses a combinator set similar to the one defined in the
previous section. Instead of manipulating a store and an expressible value stack, the combina-
tors handlestreamsof values. A typical stream consists of a store as the first value and a
sequence of expressible values thereafter, that ig, X,, - - -. The primary combinator | is
called apipeand is used in roughly the same way as the ; combinator defined in the previous
section. An expressiorkef | E;) maps a stream of values to a stream of values as follows: if
E; requiresm; values to produce its; answers, the firstn; values are removed from the
stream and given tg;; its answers are placed on the front of the stream that pas&es 6,
takes them, values it needs and places iits answers onto the front of the stream. A variation
on the pipe isE; | Eo, which skips over the firsk values in the stream when supplying the
stream tcE,.

The semantics of command composition, assignment, and addition read:

CIC4;,Cl =C[C4] | CIC2]
C[l: =E] = E[E] | updatd]
E[E1+E>] = E[E4] | E[E2] |1 plus

The Plumb system uses the YACC parser generator to configure a compiler. The gen-
erated compiler maps a source program to its combinator denotation, which is represented as a
graph. Static semantics is performed on the graph. The code generator linearizes the graph
into machine code. The system does sophisticated analysis on recursively defined objects like
while-loops and circular environments, finding their optimal representation in machine code
form. Plumb has been used on a number of test languages.

The CERES system is parameterized on whatever combinator set the user desires. A
combinator set is made known to the system bgoepiler generator definitignwhich is a
mapping from the combinator set to code generation instructions. The system composes a

212 Implementation of Denotational Definitions

language’s semantic definition with the compiler generator definition to generate the compiler
for the language. CERES is designed to be a development tool for a variety of applications,
rather than a compiler generator for a narrow class of languages. It also has been used on test
languages.

10.5 TRANSFORMATIONS ON THE SEMANTIC DEFINITION

Yet another approach to implementation is to transform the denotational definition into an
easily implementable form. The transformations exploit structural properties in the definitions:
domains such aknvironmentand Storeare made into data structures, store arguments are
converted into global variables, command denotations become machine code, and so on. The
correctness of the transformations is justified with respect to the rewriting rules of the seman-
tic notation; that is, the transformed definition has a reduction strategy that parallels the one
used on the original definition. This section presents several useful transformations.

10.5.1 First-Order Data Objects

Those semantic algebras that define data structures should have nonfunctional domains. Then
their values are simpler to represent and their associated operations are easier to optimize. We
convert a function domai = A— B into a first-order (that is, nonfunctional) domain by
representing the members Dfby tuples (or lists or arrays). The conversion is calfiedunc-
tionalization. Consider theStore algebra presented in Figure 5.1. A store is an abstraction
value, and a construction operation suchupdatebuilds an abstraction from its arguments.

The defunctionalized version of the algebra is presented in Figure 10.7.

A defunctionalized store value is a now a tuple, tagged with the name of the operation
that built it. When a store tuple is used by thecessoperation, évali s) simulates function
application. The definition ofvalis built directly from the old definitions of the construction
operationgiewstoreandupdate

The defunctionalize&toredomain isnotisomorphic to the original one (prove this), but
every store that was representable using the former versions oftive operations is
representable with the new versions. A proof of correctness of the transformation exploits this
fact to verify that any reduction using a higher-order store is successfully simulated by a
reduction that uses the corresponding first-order store. Further, any reduction using a first-
order store parallels a reduction that uses a higher-order store. The proof is left as an exercise.

Figure 10.8 shows a reduction with first-order stores.

It is usually straightforward to convert a defunctionalized algebra into a more efficient
form. For example, store tuples are just lists of identifier, number pairs, and an empty store is
an empty list. Once an identifier is updated with a new value, its former value is forever inac-

cessible. This suggests that a store be modelled as an array; tiabns: J] Nat the
i:ldentifier
accesandupdateoperations become array indexing and updating.

10.5.1 First-Order Data Objects 213

Figure 10.7

IV." Store
Domain s& Store= New+ Upd
whereNew= Unit
WUod= Identifierx Natx Store

Operations

newstore Store
newstore- inNew()

access ldentifier— Store— Nat
access AMi.As(evalig

update Identifier— Nat— Store— Store
update= Ai.An.As. inWbd(i,n,s)
where
evak Ai.As.cases of
isNew() — zero
[isWod(ir,ni,s) — ((i equalid i) = ni [] (eval i 8))
end

Figure 10.8

CIX: =Z; Y:=X+X](newstor¢
= Fy(F1(newstorg),

whereF; = As. updat§X] (acces§Z] s) s

F, = As. updat§Y] ((acces§X] s)plus(acces§X] s)) s

F>(F1), wheresy = inNew()
F2(updatgX] (acces§Z] o) so)
F,(updatdX] zero $)
F, s1, wheres; = inWpd([X], zera)
update] Y] ((acces§X] s;) plus (acces§X] s1)) st
updatgY] ((acces§X] s;) plus zerd s;
update] Y] (zero plus zerps;
updateY] zero s
S,, wheres, = inlpbd([Y], zerqs;)

220 7 N VR A VA A

The PSP system defunctionalizes data domains. The new values are ordered trees, allow-
ing fast versions of access and update operations.

214 Implementation of Denotational Definitions

10.5.2 Global Variables

Intuition tells us that the store argument in a sequential language’s definition should be treated
as a global value. To make this point, we replaceSt@edomain by a stor@ariable. Then

the operations of th&torealgebra no longer require a store argument, because they use the
contents of the store variable. Of course, not all semantic definitions can be altered this way.
The semantic equations must handle their store arguments in a “sequential” fashion: a store
transformation function receives a single store argument, makes changes to it, and passes it on
to the next function. Sequentiality is an operational notion, and we say that an expression is
single-threadedin its store argument) if a reduction strategy can be applied to the expression
such that, at each stage of the reduction, there is at most one “active” normal form value of
store in the stage. (A value &ctiveif it does not appear within the body of an abstraction
(Ax.E).) Raoult and Sethi formalize this concept by using a “pebbling game”; they call
single-threadingingle pebbling

The reduction strategy that works the best to demonstrate the single-threadedness of an
expression is a call-by-value one: treat all abstractions in the expression as if they were strict.
(This is acceptable if the expression in question contains no abstractions of form
(Wx.B):A—B.)

Figure 10.8 shows a call-by-value reduction. The active normal form values of stores are
represented by ternss. At each stage of the reduction, there is at most one active normal form
value of store. For example, the stagpdatdY] ((acces§X] s;) plus zerd s; has two
occurrences of the one active normal form vatyeThe actions upon the store occur in the
same order as they would in a conventional implementation. The multiple copies of the stores
could be replaced by a global variable holding a single copy of the store’s value. Operations
accesaindupdatewould use the global variable.

For an expression to be single-threaded, its reduction must never present a stage where a
store-updating redex is active at the same time when another active expression is using the
current store. This update-access conflict implies that multiple stores are necessary.

Following are syntactic criteria that guarantee that an expression is single-threaded with
respect to call-by-value reduction. Say thaStoretyped identifier is arivial Storetyped
expression; all otheBtoretyped expressions ar®ntrivial. The definition below states that a
single-threaded expression is structured so that a store update must not be active in the same
subexpression with any other active store expression (the noninterference property), and no
store may be bound into an abstraction’s body for later use (the immediate evaluation pro-

perty).

10.1 Ddinition:

An expression F is single threaded (in its Store argument) if each of its subexpressions E
possess the properties:
A (noninterference)
1. If E is Store-typed, then if E contains multiple, disjoint active occurrences of Store-
typed expressions, then they are the same trivial identifier;
2. If Eis not Store-typed, all occurrences of active Store-typed expressions in E are the
same trivial identifier.
B (immediate evaluation)

10.5.2 Global Variables 215

1. IfE=(Ax.M): Store— D, then all free Store-typed identifiers in M are Xx.
2. IfE=(x.M):C—D, and C is not Store-typed, then M contains no active Store-
typed expressions.

The noninterference property directly prevents the update-access conflict from arising in
active expressions. The immediate evaluation property guarantees that an abstraction will also
avoid conflict when it is reduced and its body is made active.

Lets look at some examples; let C:Command- Store— Storg and
E: Expression= Store— Expressible-valueFirst, the expressio€[C,]J(C[C]s) is single-
threaded. The call-by-value reduction strategy lock-steps the reduction 0[tha}'s reduc-
tions must be performed beforeC[C,]'s. Another example of compliance is
(As.E[E1]splusE[E>]9), for all theStoretyped subterms in it are trivial.

In contrast, C[C1]scombineC[C,] s) violates clause Al, fo€[C1]s andC[C,]s are
nontrivial and disjoint and active in the same subterm. When the abstraction is given a store,
which of the two commands should be reduced first? If a single store variable is used, an
incorrect final store will likely result. NextE[E](C[C]s) violates property A2, because
(CI[C] 9 creates a local side effect that must be forgotten after the reductida[©}.
ApparentlyE[E] needs its own local copy of the store. The expressiE[C] s) violates
B1, for the stores'is hidden in the abstraction body, and it could be used at some later time in
the reduction when a different store is current. Finalin.(updat€e[l] n 9 violates B2 and
introduces the same problem. All of these constructs would be difficult to implement on a
sequential machine.

A denotational definition is single-threaded if all of its semantic equations are. Given a
single-threaded denotational definition, we makeSkarealgebra into étoremodule” and
replace all occurrences of stores in the semantic equations with the valleit()Figure 10.9
shows the new version of the language in Figure 5.2. (Note: the expredsicasd E; are
treated asnactivein (E; = E> || Ez).)

The () markers are passed as arguments in place of store values. A () marker is a
“pointer” to the store variable, awarding access rights. But, more importantly, (cn&ol
marker,for a denotationX(). E) can reduce (that is, “get control”) only when it receives the
(). The transformation has exposed the underhgtgre-based controin the programming
language.

A program’s denotation is no longer a single function expres&ipbut a pair E, s),
wheres s the current value of the store variable. Rewrite rules operate on the expression, store
pairs; for example, the new version of the p-rule is
(- " OXMN=---, 9 = (- [NXM -,). The rewriting rules that manipulate the store
are:

(---(access()) -9 =(--'n---,9 whereevalis=n
(+-(updatein))---,9) = (---(0---, inUpd(i,n,s))

The command in Figure 10.8 is reduced with a store variable in Figure 10.10.

A machine implementation of the transformed denotational definition would treat the
store variable as a machine component andessand updateas machine instructions. The
VEC-machine in Figure 10.2 becomes MECS-machineand it uses a machine configuration
(vecs). The modification of Figure 10.2 to include the store variable is left as an exercise.

216 Implementation of Denotational Definitions

Figure 10.9

VI. Store module
var s: Store= News+ Upd, like Figure 10.6

Operations

newstore Unit
newstore- (s:=inNew())

access ldentifier— Nat— Unit— Unit
access M.AnA(). (evali9g

update Identifier— Nat— Unit— Unit
update= AMi.AnA(). (s:=inlpd(i, n, s))

Valuation functions:

C: Command- Unitl—> Uniti
CI[C1;Co] = A)-CIC2] (CIC410)

C[if B then C, elseC,] = A(). B[B]() —~C[C1101 CIC210

C[while B do C] = wh
wherewh= (). B[B]() —wh(C[C](0) [O

CII: =E] = (. updatdl] (E[E]JO) ()
E: Expression— Unit — Nat

E[E1+E] = (). E[E1]() plusE[E]()

E[IT =A(). acces§l] ()

EIN] =20-NIN]

10.5.3 Control Structures 217

Figure 10.10

CIX: =Z;Y:=X+X][(newstoré= F,(F; newstoreg,
whereF; = A(). updatd X] (acces§Z]()) ()

F,= (). updatd Y] ((acces§X] ()) plus(acces§X] () ()
F2(F1(0), ands: Storehas value iNew().

F2(updatdX] (acces§Z] () ()

F,(updatdX] zero())

F,() ands: Storehas value ibbd([X], zerg inNew())
update[Y] ((acces§X] () plus(acces§X] ())) O

update[Y]((acces§X] () plus zerd ()
update[Y] (zero plus zerp()

updatgY] zero()
() ands: Storehas value ipd([Y], zerg inWpd([X], zerqg inNew())).

2 20 T N VR A VA A

10.5.3 Control Structures

The definition in Figure 10.9 can be improved by writing it in a combinator format. We define
the following combinators:

Ey; Ex = (M) E2(E10)

ifBtheng elsek = (M).B)—=E; ([Ex()
updiE = (A().updateiB()())

skip = (A(). ()

Ei+Ex = (M)-EL() plus B()

n = (A().n)

Figure 10.11 presents Figure 10.9 in combinator form.

Each of the combinators has a useful rewriting rule. A combinisker (A(). N) has the
rewriting ruleM() = N. The rewriting rules eliminate the lambda bindings but still distribute
the control markers () throughout the subexpressions of an expression. The combinators are
rightly calledcontrol structuresfor they distribute control to their arguments. For example,
the rewriting rule forE,; E, makes it clear thaE; gets control befor&,. The rule forg;+E,
shows that control can be given to the arguments in any order, even in parallel.

A stored program machine can be derived from the rewriting rules. With its instruction
counter, the machine mimics the distribution of the () markers. The control markers become
redundant— the instruction counter (), and when the counter points to (the code of) an
expressiork, this represents the combinati&f). You are given the exercise of defining such
a machine for the language in Figure 10.11.

We make one remark regarding thehile-loop in Figure 10.11. The rewriting rules
evaluate a recursively defined object liké by unfolding:

218 Implementation of Denotational Definitions

Figure 10.11

CI[C1:Ca] = CIC4]; CIC2]
Cll:=E] = upd[1] E[E]
C[if B then C, elseC,] = if B[B] thenC[C,] elseC[C>]
C[while B do C] = wh
wherewh= if B[B] thenC[C]; wh else skip
E[E1+E.] = E[E1] + E[E]
E[] = accesql]
E[N] = N[N]!

wh = if B[B] thenC[C]; wh else skip

Unfolding is not an efficient operation on a stored program machine. Steele (1977) points out,
however, that certain recursively defined objedtshave efficient representations: theal-
recursiveones. A recursively defined object is tail-recursive if the final value resulting from a
reduction sequence of recursive unfoldings is the value produced by the last unfolding in the
seqguence. (Stated in another way, a return from a recursive call leads immediately to another
return; no further computation is done.) An important property of a tail-recursive function is
that its code can be abbreviated to a loop. This is justified by applying the ideas in Section
6.6.5;wh defines the infinite sequence:

thenC[CJ; if B[B]

skip else skip

thenC[C]; if B[[BILIse

T BIB] else skip

It is easy to see that this sequence has a finite abbreviation, just like the example in Section
6.6.5. Usingabelandjumpoperators, we abbreviate the infinite sequence to:

C[while B do C]|=wh
wherewh= label L if B[B] thenC[C]; jump L else skip
The label and jump instructions are put to good use by the stored program machine. An

induction on the number of unfoldings of an evaluation proves that the original and abbrevi-
ated definitions oWvh are operationally equivalent on the stored program machine.

10.6 IMPLEMENTATION OF CONTINUATION-BASED
DEFINITIONS

Many workers prefer to implement a language from its continuation semantics definition. An
evaluator for a continuation semantics definition is straightforward to derive, because the nest-
ing structure of the continuations suggests a sequential flow of control. The instruction set of

10.6 Implementation of Continuation-Based Definitiora19

the evaluator is just the collection of operations from the continuation algebras, and the
evaluator’s components are derived from the semantic domains in the semantic definition.

In this section, we develop a compiler and an evaluator for the language in Figure 9.5. To
see the evaluator structure suggested by that definition, consider the denotation of
[X:=1; X:=X+2; C]; it is:

(return-value oné& (assign I® (fetch | (save-arg® (return-value twd
¢ (add" (assign 9 (c)))))))

The letters in quotes prefix and name the continuations in the expression. For a hypothetical
storesy, a simplification sequence for the denotation is:

(return-valueone'a’) s

= (assign|‘b’) onegy

= (fetchl ‘c’) s; wheres; = [| = o0n€]s,
= (save-arg‘d’ ‘e’) ones;

= (return-valuetwo(‘'e’ ong) s; ()

= (add ‘f') onetwo s;

= (assignl‘g’) threes;

=Co [l = three]s,

At each stage (except the stage labeledl the configuration has the forne " s); that is, a
continuationc followed by zero or more expressible valugs followed by the store. These

three components correspond to the control, temporary value stack, and store components,
respectively, of the VECS-machine. An environment component is not present, because the
continuation operations hide binding identifiers.

The configurations suggest that the evaluator for the language has a configuratfn (
where c& Control-stack= Instructiori’, v& Value-stack= Exprval’, and s& Store The
evaluator’s instruction set consists of the operations of the continuation algebras. A nested
continuationcy(cy(- - -c, - - *)) is represented as a control stagkc,: - - -:c,.

The denotational definition is not perfectly mated to the machine structure. The problem
appears in stage:). the save-argoperation forces its second continuation argument to hold
an expressible value that should be left on the value stack. This is not an isolated occurrence;
the functionality of expression continuations forces those expression continuations that require
multiple expressible values to acquire them one at a time, creating local “pockets” of storage.
We would like to eliminate these pockets and removestdne-argoperation altogether. One
way is to introduce a value sta@iprval for the expression continuations’ use. We define:

vE Value-stack Exprval
ke Exprcont= Value-stack= Cmdcont

Regardless of how many expressible values an expression continuation requires, its argument
is always the value stack. This form of semantics is callsthak semanticslt was designed
by Milne, who used it in the derivation of a compiler for an ALGOLG68 variant. Figure 10.12
shows the stack semantics corresponding to the definition in Figure 9.5.

Now command continuations pass along both the value stack and the storif. artte
while commands use a different version of ttl@ooseoperation; the new version eliminates

220 Implementation of Denotational Definitions

Figure 10.12

XII'. Command continuations

Domainc&e Cmdcont Value-stack= Store— Answer
Operations

finish: Cmdcont
finish= Av.As. inOK(s)

err: String— Cmdcont
err= At.AVAS. inErr(t)

skip: Cmdcont= Cmdcont
skip=Ac.c

XII'. Expression continuations

Domaink& Exprcont Value-stack= Store— Answer
Operations

return-value Exprval— Exprcont= Exprcont
return-value= An.AkAv. Knconsy

add: Exprcont—= Exprcont
add= AkAv. K ((hd(tlv)) plus (hd V)) cons(tl(tl v)))

fetch: Location— Exprcont— Exprcont
fetch= ALLAKAVAS. (access I kconsy s

assign Location— Cmdcont= Exprcont
assign= Al.ACAVAs. tlv) (update l(hd V) 9)

choose (Cmdcont= Cmdcon}t— (Cmdcont= Cmdcont— Cmdcont= Exprcont
choose- Af.Ag.AcAv. ((hdV) greaterthan zere= (fc) | (g©)) (tlv)

Valuation functions:

P:: Program— Location— Cmdcont(like Figure 9.5)

B:: Block— Environment= Cmdcont= Cmdcont(like Figure 9.5)
D Declaration— Environment= Environmen{like Figure 9.5)

Cr: Command-> Environment> Cmdcont= Cmdcon{(like Figure 9.5, except for)
Ci[if B then C; elseC,] = Ae.Es[E] ° (choosgCi[C1]€) (C:C>]€)
Ci[while B do C] = Ae. fiXAg.Es[E] e > (choosgCi[C] e~ g) skip)

E:: Expression= Environment> Exprcont= Exprcont(like Figure 9.5, except for)
E{[E1+E,] = Ae.rk.E«[E] e (E{[E,] e(addR)

redundant continuations. Tlsave-argoperation disappears from the semantics of addition.
It is nontrivial to prove that the stack semantics denotation of a program is the same as its

10.6 Implementation of Continuation-Based Definitior221

continuation semantics denotation (see Milne & Strachey 1976). Since we have altered the
expression continuation domain, its correspondence to the original domain is difficult to state.
A weaker result, but one that suffices for implementation questions, is that the reduction of a
stack semantics denotation of a program parallels the reduction of its continuation semantics
denotation. We must show: for every syntactic form [M]; for environmentand its
corresponding environmeastin the stack semantics; for corresponding continuatioasdk;

value staclk; stores; and expressible valug

M[m]eks =" k(n)s iff Mi[m]Jekvs="k(nv)s

By “corresponding” continuation& andk’, we mean thatns) equals ki (n:v) s). Environ-
mentse and e’ correspond when they map identifiers to corresponding continuations (or the
same values, if the identifier's denotable value is not a continuation). Most of the cases in the
proof are easy; the proof for thvehile-loop is by induction on the number of unfoldingsfof

in a reduction sequence. The block construct is proved similarly to the loop but we must also
show that the respective environments created by the block correspond.

The evaluator for the stack semantics appears in Figure 10.13. The evaluator’s rules are
just the definitions of the continuation operations. A source program is executed by mapping
it to its stack semantics denotation, performing static semantics, and evaluating the resulting
Figure 10.13

c€ Control-stack= Instructiori
vE Value-stack Exprval
sE Store
wherelnstruction= return-value+ add+ fetch+ assign+
chooser skip+ finish+ err

Instruction interpretation:

return-value nc vV S = Cc nv s

addc m:njiv. s = Cc Nn3vs
whereng is the sum oh; andn,

fetchtc v s = ¢ nv s
wheren= access | s

assignicnv s = c¢ v s
wheres = update I ns

(choosefyc zerav s = gic Vv s

(choosefyc nv s = fic v s
wheren is greater thazero

finish v s = inOK(s)

errt v s = inErr(t)

skipc v s = ¢ Vv s

222 Implementation of Denotational Definitions

continuation on the evaluator.

A similar method for inducing the temporary value stack has been developed by Wand.
He does not introduce a value stack domain but inserts “argument steering” combinators into
the semantic equations instead. Run-time configurations take the éorn (- n,, S). The net
result is the same, but the proof that the new semantic definition is equal to the original is
much simpler than the one needed for our example. Wand’s research papers document the
method.

Although the instruction set for the interpreter is in plafie,operators still appear in
those translated programs containiwgile-loops and labels. The fixed point simplification
property {ix F) = F(fix F) can be used by the interpreter, but we choose to introduce the opera-
tion whilefdog representing the expressiofix(Ac.fe (choosgg e o) skip) so that
C[while B do C] = he.whileE[E] e doC[C] e. The evaluation rule is:

whilefdohcv s = f:(choosgh:whilefdol skip):c vV s

The gotaos present a more serious problem. A block with labels does not have a simple,
tail-recursive expansion like thehile-loop. One solution is to carry over the language’s
environment argument into the evaluator to hold the continuations associated with the labels.
A goto causes a lookup into the environment and a reloading of the control stack with the con-
tinuation associated with thgoto.

The problem with thejotaos is better resolved when an instruction counter is incorporated
into the evaluatorjump andjumpfalseinstructions are added, and the code for blocks is gen-
erated with jJumps in it. A continuatiorciupleli) is a tail-recursive call to thigh ctuplecom-
ponent. If theith component begins at lable] we generatjump L (Also, thewhile-loop can
be compiled to conventional loop code.) The proof of correctness of these transformations is
involved and you are referred to Milne & Strachey (1976) and Sethi (1981).

10.6.1 The CGP and VDM Methods

Raskovsky’s Code Generator Process (CGP) is a transformation-oriented compiler generation
method. It transforms a denotational definition into a BCPL-coded code generator in a series
of transformation steps. Each transformation exploits a property of the semantic definition.
Defunctionalization, continuation introduction, and global variable introduction for stores and
environments are examples of transformations. The generated compiler maps source programs
to BCPL code; the evaluator is the BCPL system. The system has been used to develop com-
pilers for nontrivial languages such as GEDANKEN.

Bjdrner and Jones advocate a stepwise transformation method that also uses transforma-
tions described in this chapter. Their work is part of a software development methodology
known as the Vienna Development Method (VDM). VDM system specifications are denota-
tional definitions; the semantic notation is a continuation-style, combinator-based notation
called META-IV. Evaluators for VDM specifications are derived using the ideas in the previ-
ous section. Compilers, data bases, and other systems software have been specified and imple-
mented using the method. See Bjdrner and Jones, 1978 and 1982, for a comprehensive

10.6.1 The CGP and VDM Method<223

presentation.

10.7 CORRECTNESS OF IMPLEMENTATION AND
FULL ABSTRACTION

In previous sections, we stated criteria for correctness of implementation. We now consider
the general issue of correctness and provide standards for showing that an operational seman-
tics definition is complementary to a denotational one. The study leads to a famous research
problem known as th&ill abstraction problem.

Recall that an operational semantics definition of a language is an interpreter. When the
interpreter evaluates a program, it generates a sequence of machine configurations that define
the program’s operational semantics. We can treat the interpreter as an evaluation eelation
that is defined by rewriting rules. A program’s operational semantics is just its reduction
sequence. For a source languageve might define an interpreter that redutceprograms
directly. However, we have found it convenient to tre& semantic functioP:L—D as a
syntax-directed translation scheme and use it to trankkgt®grams to function expressions.
Then we interpret the function expressions. k€t Function-exprbe a function expression
representation of a source program after it has been translat®d I8ince expressions are
treated as syntactic entities by the interpreter for function expressions, weeyste, to
assert that the denotations of the function expressipasde, are the same value.

Let | be the set of interpreter configurations anddlefFunction-expr—=1 be a mapping
that loads a function expression into an initial interpreter configuration. A configuration is
final if it cannot be reduced further. The set of final interpreter configurations is daited
We also make use of an “abstraction” map | — Function-expy which restores the function
expression corresponding to an interpreter configuation. The minimum required to claim that
an operational semantics definition is complementary to a denotational one is a form of sound-
ness we calfaithfulness

10.2 Ddinition:

An operational semantics> is faithful to the semantics of Function-expr if for all
ec Function-expr andé I, ¢(e) =" i implies e= y(i).

Faithfulness by itself is not worth much, for the interpreter can have an empty set of evalua-
tion rules and be faithful. Therefore, we define some sulisstof Function-expito be answer
forms. For example, the set of constantdNiait can be an answer set, as can the set of all nor-
mal forms. A guarantee of forward progress to answers is a form of completeness veg-call
mination.

10.3 Ddinition:

An operational semanticss> is terminating in relation to the semantics of Function-expr
if, for all e Function-expr and @ Ans, if e = a, then there exists some Fin such that
d(e) =" i, p(i) € Ans, andy(i) = a.

224 Implementation of Denotational Definitions

Termination is the converse of faithfulness, restricted ta tineFin. We use the requirement
Y(i) = a (rather thany(i) = a) because two elements 8ihs may share the same value (e.g.,
normal form answers\{.t—a | b) and Q.. not(t) — b [| a) are distinct answers with the same
value). IfAns is a set whose elements all have distinct values (e.g., the constaya$ inhen
P(i) must bea. If the operational semantics is faithful, then the requirementqtigt= a is
always satisfied.

We apply the faithfulness and termination criteria to the compile-evaluate method
described in Sections 10.1 and 10.3. Given a denotational defiftikn— D, we treatP as a
syntax-directed translation scheme to function expressions. For program [P], the expression
P[P] is loaded into the interpreter. In its simplest version, the interpreter requires no extra
data structures, hence bothand y are identity maps. Recall that the interpreter uses a
leftmost-outermost reduction strategy. A final configuration is a normal form. An answer is a
(non-|) normal form expression. By exercise 11 in Chapter 3, the reductions preserve the
meaning of the function expression, so the implementation is faithful. In Section 10.3 we
remarked that the leftmost-outermost method always locates a normal form for an expression
if one exists. Hence the method is terminating.

The definitions of faithfulness and termination are also useful to prove that a low-level
operational semantics properly simulates a high-level one: let (the symmetric, transitive clo-
sure of) the evaluation relation for the high-level interpreter defirend let the low-level
evaluation relation define>. Ans is the set of final configurations for the high-level inter-
preter, andrin is the set of final configurations for the low-level one. This method was used in
Sections 10.3 and 10.6.

There are other versions of termination properties. We develop these versions using the
function expression interpreter. In this cageandy are identity maps, and th&ns and Fin
sets are identical, so we dispense with the two mapsFama@nd work directly with the func-
tion expressions andns. We ddine acontextto be a function expression with zero or more
“holes” in it. If we view a context as a derivation tree, we find that zero or more of its leaves
are nonterminals. We write a hypothetical contexCh$ When we use an expressi&no fill
the holes in a contexXt|], giving a well-formed expression, we writg[E]. We fill the holes
by attachingE’s derivation tree to all the nonterminal leavesdp]'s tree. The formalization
of contexts is left as an exercise.

A context provides an operating environment for an expression and gives us a criterion
for judging information content and behavior. For example, we can use structural induction to
prove that for expressiorid andN and contextC[], M E N implies thatC[M] E C[N]. We
write M=N if, for all contextsC[] and a€ Ans, C[M] =" a implies thatC[N] =" a and
a=a. We write M= N if M=N andN2M and say thaiM andN are operationally equivalent.

The following result is due to Plotkin (1977).

10.4 Proposition:

If = is faithful to the semantics of Function-expr, then is terminating iff for all
M, N& Function-expr, M= N implies M= N.

Proof: Left as an exercisel]

This result implies that denotational semantics equality implies operational equivalence under

10.7 Correctness of Implementation and Full Abstractidz25

the assumption that the operational semantics is faithful and terminating. Does the converse
hold? That is, for a faithful and terminating operational semantics, does operational
equivalence imply semantic equality? If it does, we say that the denotational semantics of
Function-expiis fully abstractin relation to its operational semantics.

Plotkin (1977) has shown that the answer to the full abstractness questibarfotion-
exprand its usual interpreter i®. Let Fy: (Tr) x Tr)) —Tr) be the function expression:

Aa.lett = a(true, |)in
t; — (lett, = a(|, true) in
t, — (lettz = a(false falsg in
ts—= [1 b)
1D
0Ll

We see thatFy e BFryse (@and vice versa) by considering the continuous function
v:Tr xTr —Tr whose graph is{((|, true), true), ((true, |), true), ((true, true), true),
((true, false), true), ((false true), true), ((false false), false} (as usual, pairs K n), |) are
omitted). The functiorv is the “parallel or” function, andre(V) = true but Fsy<(V) = false
But Plotkin proved, for the language of function expressions and its usual operational seman-
tics, thatF, = Frased The reason that the two expressions are operationally equivalent is that
“parallel” functions like v are not representable in the function notation; the notation and its
interpreter are inherently “sequential.”

There are two possibilities for making the denotational semanti€sin€tion-exprfully
abstract in relation to its interpreter. One is to ext&uehction-exprso that “parallel” func-
tions are representable. Plotkin did this by restrictingAhe set to be the set of constants for
NatandTr and introducing a parallel conditional operatioar-cond: Tr| x D| x D| =D, for
D &{Nat, Tr}, with reduction rules:

par-condtrue, d{, dy) = d;
par-condfalse dq, d,) = d,
par-cond], d,d) =d

Then v=A(ty, t). par-condt,, true, t;). Plotkin showed that the extended notation and its
denotational semantics are fully abstract in relation to the operational semantics.

Another possibility for creating a fully abstract semantics is to reduce the size of the
semantic domains so that the nonrepresentable “parallel” functions are no longer present. A
number of researchers have proposed domain constructions that do this. The constructions are
nontrivial, and you should research the suggested readings for further information.

SUGGESTED READINGS

General compiler generating systems:Appel 1985; Ganzinger, Ripken & Wilhelm 1977;
Jones 1980; Mosses 1975, 1976, 1979; Paulson 1982, 1984; Pleban 1984; Wand 1983
Static semantics processing:Ershov 1978; Jones et al. 1985; Mosses 1975; Paulson 1982

226 Implementation of Denotational Definitions

Sethi 1981

Rewriting rules & evaluators for function notation: Berry & Levy 1979; Burge 1975;
Hoffman & O’Donnell 1983; Huet & Oppen 1980; Landin 1964; Vegdahl 1984

Combinator systems & evaluators: Christiansen & Jones 1983; Clarke et al. 1980; Curry &
Feys 1958; Hudak & Krantz 1984; Hughes 1982; Mosses 1979a, 1980, 1983a, 1984;
Raoult & Sethi 1982; Sethi 1983; Turner 1979

Transformation methods: Bjérner & Jones 1978, 1982; Georgeff 1984; Hoare 1972; Raoult
& Sethi 1984; Raskovsky & Collier 1980; Raskovsky 1982; Reynolds 1972; Schmidt
1985a, 1985b; Steele 1977; Steele & Sussman 1976a, 1976b

Continuation-based implementation techniques: Clinger 1984; Henson & Turner 1982;
Milne & Strachey 1976; Nielson 1979; Polak 1981; Sethi 1981; Wand 1980a, 1982a,
1982b, 1983, 1985b

Full abstraction: Berry, Curien, & Levy 1983; Milner 1977; Mulmuley 1985; Plotkin 1977,
Stoughton 1986

EXERCISES

1. a. Using the semantics of Figure 5.2, evaluate the prodgiffn=A+1]four using the
compile-evaluate method and using the interpreter method.
b. Repeat part a for the prograf[beginvarA;A:=A+lend] |y (Al.zerg and the
language of Figures 7.1 and 7.2.

N

If you have access to a parser generator system such as YACC and a functional language
implementation such as Scheme, ML, or LISP, implement an SPS-like compiler generat-
ing system for denotational semantics.

3. Using the criteria for determining unfrozen expressions, work in detail the static seman-
tics processing of:

a. The example in Section 10.2.

b. The program in part b of Exercise 1 (with tBeore, NatandTr algebras frozen).

c. The program in Figure 7.6 (with tunction, List,andEnvironmentlgebras frozen;
and again with just thEunctionandList algebras frozen).

4. LettheStorealgebra be unfrozen; redo the static semantics of parts a and b of Exercise
3. Why don't real life compilers perform a similar service? Would this approach work
well on programs containing loops?

5. The example of static semantics simplification in Section 10.2 showed combinations of
the form ¢s.M)s simplified to M. Why is this acceptable in the example? When is it
not?

6. Recall that the simplification rule for tHex operation is fix F) = F(fix F). How should
this rule be applied during static semantics analysis? Consider in particular the cases of:

10.

11.

12.

13.

Exercises 227

i. Recursively defined environmergs: fix(Aer. - -).
ii. Recursively defined commands and procedyredix(Ap.As. - -).

A number of researchers have proposed that a language’s valuation function be divided
into a static semantics valuation function and a dynamic semantics valuation function:

Cg: Command- Environment->Tr
Cp: Command-= Environment— ((Store— Poststorg+ Err)

such that a well typed command [C] has denotati©g]C] = true and a denotation
Cp[C] in the summand $tore— Poststorg. Similarly, an ill typed program has a deno-
tation offalsewith respect taCg and an irerr() denotation with respect Gp .

a. Formulate these valuation functions for the language in Figures 7.1 and 7.2.
b. Comment on the advantages of this approach for implementing the language. Are
there any disadvantages?

a. Perform leftmost-outermost reductions on the following expressions. If the expres-
sion does not appear to have a normal form, halt your reduction and justify your deci-
sion.

i (Ax.zerg((AX. x) (AX.xX)
i, (Ax.zerg((Ax.xX(AX.xx)
iii. ((MXAy. Yy X)(oneplusong(Arz.ztimesy
iv. ((AxAy.¥yX)(oneplusonp(rz.ztimesk
V. ((AXAy. Yy X)(oneplus ong(Az. ztimesy

b. Redo part a, representing the expressions as trees. Show the traversal through the
trees that a tree evaluator would take.

Implement the tree evaluator for function notation. (It is easiest to implement it in a
language that supports list processing.) Next, improve the evaluator to use an environ-
ment table. Finally, improve the evaluator to use call-by-need evaluation.

Evaluate the code segmenishclosuré: return): A: call from Figure 10.4 on the VEC-
machine.

Translate the expressions in exercise 8 into VEC-machine code and evaluate them on the
VEC-machine.

Improve the code generation magfor the VEC-machine so that it generates assembly
code that contains jumps and conditional jumps.

Improve the VEC-machine so thatish xbecomegush*offset,” where “offset” is the
offset into the environment where the value bound tan be found. Improve the code
generation map so it correctly calculates the offsets for binding identifiers.

228

14.

15.

16.

17.

18.

19.

Implementation of Denotational Definitions

Augment the VEC-machine with instructions for handling pairs and sum values. Write
the translation3 [(E;, E,)] and T[[casesE; of G|, where G :=inl1(I,) = E[G | end.

Compile the programs in Exercise 3 to VEC-code after static semantics has been per-
formed. Can you suggest an efficient way to perform static semantics?

a. Augment the combinator language definition in Figure 10.7 with combinators for
building environments.

b. Rewrite the semantics of the language in Figures 7.1 and 7.2 in combinator form.

c. Propose a method for doing static semantics analysis on the semantics in part b.

Convert theStorealgebra in Figure 10.7 into one that manipulates ordered tree values.
Are the new versions aiccesaindupdatemore efficient than the existing ones?

a. Verify that theC andE valuation functions of the language of Figure 5.2 are single-
threaded. Does the function satisfy the criteria of Definition 10.1? Is it single-
threaded?

b. Extend Definition 10.1 so that a judgement can be made about the single-
threadedness of the language in Figures 7.1 and 7.2. Is that language single-threaded?
Derive control combinators for the language.

An alternative method of generating a compiler from a continuation semantics of a
language is to replace the command and expression continuation algebras by algebras of
machine code. Le€odebe the domain of machine code programs for a VEC-like stack
machine, and use the following two algebras in place of the command and expression
continuation algebras in Figure 9.5 (note: the *:” denotes the code concatenation opera-
tor):

XII'. Command code
Domainc& Cmdcont Code
Operations

finish= stop
error = At. pushconstt

XIII'. Expression code

Domaink& Exprcont= Code

Operations
return-value= An.k. pushconstn: k
save-arg= Af.Ag. f(g)
add= Ak.add: k
fetch= Al.Ak. pushvarl: k
assign= Al.Ac.storevarl: c
choose- Acq.ACy. jumpzeroLq: cq:jump Ly:labells: c,: labell,

20.

21.

22.

23.

Exercises 229

a. Generate the denotations of several programs using the new algebras.
b. Outline a proof that shows the new algebras are faithful to the originals in an opera-
tional sense.

Revise the stack semantics in Figure 10.13 so that the expressible value stack isn't used
by command continuations; that is, tkendcontdomain remains as it is in Figure 9.5,

but the stack is still used by tHexprcontdomain, that isExprcontis defined as in Figure
10.13. What are the pragmatics of this semantics and its implementation?

a. Prove that the evaluator with an environment in Section 10.3 is faithful and terminat-
ing in relation to the evaluator in Section 10.1.

b. Prove that the VEC-machine in Section 10.3.1 is faithful and terminating in relation
to the evaluator with environment in Section 10.3 when the answer set is limited to
first-order normal forms.

c. Prove that the defunctionalized version of a semantic algebra is faithful and terminat-
ing in relation to the original version of the algebra.

Prove that the properties of faithfulness and termination compose; that is, for operational
semanticsA, B, and C, if C is faithful/terminating in relation toB, and B is
faithful/terminating in relation t@\, thenC is faithful/terminating in relation té\.

a. Give the graph of the functiopar-cond Tr| xD; xD; —D; for DE{Nat, Tr},
prove that the function is continuous, and prove that its rewriting rules are sound.

b. Attempt to define the graph of a continuous functpar-cond: Tr; x Dx D — D for
arbitrary D and show that its rewriting rules in Section 10.7 are sound. What goes
wrong?

Chapter 11

Theory Ill: Recursive Domain
pec |cat|0ns

Several times we have made use of recursively defined domains (also caflexive
domaing of the form D= F(D). In this chapter, we study recursively defined domains in
detail, because:

1. Recursive definitions are natural descriptions for certain data structures. For example, the
definition of binary treesBintree = (Data + (Data x Bintree x Bintreg), clearly states
that a binary tree is a leaf of data or two trees joined by a root node of data. Another
example is the definition of linear lists ételementsAlist = (Nil + (A x Alist));, where
Nil = Unit. The definition describes the internal structure of the lists better thaA'the
domain doesAlist's definition also clearly shows why the operatiaaens, hd, tl,and
null are essential for assembling and disassembling lists.

2. Recursive definitions are absolutely necessary to model certain programming language
features. For example, procedures in ALGOL60 may receive procedures as actual param-
eters. The domain definition must reRtbc = Param— Store— Store, whereParam=
Int+ Real+ - - - + Proc, to properly express the range of parameters.

Like the recursively defined functions in Chapter 6, recursively defined domains require
special construction. Section 11.1 introduces the construction through an example, Section
11.2 develops the technical machinery, and Section 11.3 presents examples of reflexive
domains.

11.1 REFLEXIVE DOMAINS HAVE INFINITE ELEMENTS

We motivated the least fixed point construction in Chapter 6 by treating a recursively defined
function f as an operational definition-fs application to an argumerat was calculated by
recursively unfolding’s definition as needed. If the combinatidra) simplified to an answer

b in a finite number of unfoldings, the function satisfying the recursive specification mapped

to b as well. We used this idea to develop a sequence of functions that approximated the solu-
tion; a sequence membgresulted from unfoldind's specificationi times. Thef;’s formed a

chain whose least upper bound was the function satisfying the recursive specification. The key
to finding the solution was building the sequence of approximations. A suitable way of com-
bining these approximations was found and the problem was solved.

Similarly, we build a solution to a recursive domain definition by building a sequence of
approximating domains. The elements in each approximating domain will be present in the
solution domain, and each approximating domBjnwill be a subdomainof approximating
domainDj,q; that is, the elements and partial ordering structur®,0ére preserved iD;,;.

230

11.1 Reflexive Domains Have Infinite Elemen231

Since semantic domains are nonempty collections, we take doqaio be{ |}. Dy is a
pointed cpo, and in order to preserve the subdomain property, each approximating @pmain
will be a pointed cpo as well. Domal,; is built from D; and the recursive definition.

Let's apply these ideas talist= (Nil + (Ax Alist)); as an exampleNil = Unit represents
the empty list, and a nonempty list Afelements has the structulex Alist. An Alist can also
be undefined. Domairlisty={ | }, and for each> 0, Alist,; = (Nil + (Ax Alist));. To get
started, we drawlist; = (Nil + (Ax Alisty)), as:

Nil Ax{]}
L
becauseAxAlisty = Ax{|} = {(a]) | acA}. (For readability, from here on we will
represent &-element list asdg, a1, - - *, &], omitting the injection tags. Hencdlist; =

{1, [nil]} U {[a [] | a=A}.) Alisty is a subdomain ofAlist;, as | €Alisty embeds to
J_EA“Stl

Next, Alist; = (Nil + (A x Alisty));. The productAx Alist; = A x (Nil + (A x Alisty)), can
be visualized as a union of three distinct sets of elemefis; |] | ac A}, the set ofpartial
lists of one element{[a, nil] | acA}, the set of proper lists of one element, and
{[a1, @, |]| a1, €A}, the set of partial lists of two elements. Drawifg Alist; with these
sets, we obtain:

Ax Nil AxAx{]|}

Nil Ax{]|}

!

It is easy to see whermlist; embeds intdAlist,— into the lower portionAlist, contains ele-
ments with more information than thoseAfist; .

A pattern is emergingAlist, contains|; nil; proper lists of (-1) or lessA-elements; and
partial lists ofi A-elements, which are capable of expanding to lists of greater length in the
later, larger domains. The elemeptserves double duty: it represents both a nontermination
situation and a “don’t know yet” situation. That is, a lisdg, a;, |] may be read as the result
of a program that generated two output elements and then “hung up,” or it may be read as an
approximation of a list of length greater than two, where information as to what foligiis
not currently available.

What is the limit of the family of domainAlist;? Using the least fixed point construction

as inspiration, we might takalist;, = |_J Alist;, partially ordered to be consistent with the

i=0
Alist’s. (That is,X Cajist, X iff there exists somg= 0 such thak Calist x.) DomainAlistg, con-
tains |, nil, and all proper lists of finite length. But it also contains all the partial lists! To dis-
card the partial lists would be foolhardy, for partial lists have real semantic value. But they
present a problem:Alist;, is not a cpo, for the chain|, [ag, |], [ag, a1,], -,

232 Domain Theory lll: Recursive Domain Specifications

[ag, a1, " - -, &, |], - - - does not have a least upper bound\iist;,.
The obvious remedy to the problem is to add the needed upper bounds to the domain.
The lub of the aforementioned chain is tindinite list [ag, a1, - -, &, &1, - - *]. It is easy to

see where the infinite lists would be added to the domain. The result, édiltd, is:

ﬁA=AxAxAx e
i=0
AxAxAxNil
Ax Ax Nil AxAxAx{]}
AxNil AxAx{]|}
Nil Ax{]}
l

The infinite elements are a boon; realistic computing situations involving infinite data struc-
tures are now expressible and understandable. Consider thepstified byl = (a cons), for
ac A. The functional §l. a cons): Alist,, — Alist,, has as its least fixed poir,[a, a, - - -], the
infinite list of a's. We see thal satisfies the propertieddl)=a, (tll)=1, and aulll) = false
The termlazy listhas been coined for recursively specified lists liker when one is used in
computation, no attempt is ever made to completely evaluate it to its full length. Instead it is
“lazy”— it produces its next element only when asked (by the disassembly opetadjon

Alist,, appears to be the solution to the recursive specification. But a formal construction
is still needed. The first step is formalizing the notion of subdomain. We introduce a family
of continuous functiong; : Alist;— Alist,; for i=0. Each¢; embedsAlist, into Alist,,. By
continuity, the partial ordering and lubs Adist, are preserved iAlist, ;. However, it is easy
to find ¢; functions that do an “embedding” that is unnatural (e.¢=AX. | ajs;). TO
guarantee that the function properly embgédist; into Alist,,;, we also define a family of con-
tinuous functiongp; : Alist,,; — Alist; that map the elements ilist,,; to those inAlist; that
best approximate themlist is a subdomain oAlist,; wheny; o ¢; = idpjs; holds; that is,
every element irAlist, can be embedded hy and recovered by;. To force the embedding
of Alist; into the “lower portion” of Alist,;, we also require thad; o ; Cidpjs; . This
makes it clear that the new elementgllist;, ; not in Alist, “grow out” of Alist.

The function pairsdj, 1;), i=0, are generated from the recursive specification. To get
started, we defingg: Alisty— Alist; as @X. | ajisy,) @andyyg: Alist; — Alisty as ¢x. | ajist,)- It is
easy to show that thepd, yp) pair satisfies the two properties mentioned above. For every
i> 0:

11.1 Reflexive Domains Have Infinite Elemen33

¢;: Alist— Alist,,; = AX.case of
isNil() — inNil()
[isAxAlist_1(a, 1) — inAxAlist (a, ¢;_1(1)) end

The embedding is based on the structure of the argument f&bst). The structures of
undefined and empty lists are preserved, and a list with head ele@arand taille Alist;,_;
is mapped into a paia(¢;_1 (1)) Ax Alist;, courtesy ofp;_: Alist_; — Alist;. Similarly:

yj © Alisti,; — Alist; = Ax.case of
isNil() — inNil()
[isAxAlist (a, I) = inAxAlist_;(a, yi_1(l)) end

The function converts its argument to its best approximatiohlist; by analyzing its structure
and usingy;_; where needed. A mathematical induction proof shows that eachdpaip; |
satisifies the required properties.

A chain-like sequence has been created:

Yo Y1 P
Alisty Alist; Alist, -+ Alist, Alist, 1
do $1 Oi

What is the “lub” of this chain? (It will beAlist,.) To give us some intuition about the lub,
we represent the elements of Alist;, domain as tuples. An elemerE Alist, appears as an
(i+1)-tuple of the form Xg, X, - - -, Xi_1, %), whereX; =X, Xi_1 =9i_1(%), -, X3 =YP1(X),

and xg=yo(X;). For example, 4o, a;, nilj€Alist; has tuple form |, [ag,]], [ag, a1, |],

[aO! A, nll])1 [aO! a, a, .L]EAIIStS has form ﬂ.’[aO!.U’ [aO’ ai, .l_]v [aO1a1! ay, .l.])a

[ag, nill€ Alist; has form (,[ag, |1, [ag, nil], [ag, nil]); and | € Alists has form (, |, |, |).

The tuples trace the incrementation of information in an element until the information is com-
plete. They suggest that the limit domain of the chadist,, has elements whose tuple
representations hawefinite length. A finite listx with i A-elements belongs talist,, and has

tuple representatiorxd, X;, - - -, Xi_1, X, X, - - -)— it stabilizes. The infinite lists have tuple
representations that never stabilize: for example, an infinite listohas the representation
L[l [aa [l [aaa][] - [aaa -+ a]] -). The tuple shows that the infinite

list has information content that sums all the finite partial lists that approximate it.

Since there is no real difference between an element and its tuple representation (like
functions and their graphs), we take the definition of the limit don#dist,, to be the set of
infinite tuples induced from thalist;’s and they;’s:

Alist, ={ (Xg, X1, = * =, X, - = *) | for all n=0, x,€ Alist, andX,=y,(Xn;1) }

partially ordered by, for alk,ye Alist,,, X2y iff for all n=0, x| nEjs;, Y| N. Alist,, contains
only those tuples with information consistent with tAést’s. The partial ordering is the
natural one for a subdomain of a product domain.

Now we must show thatAlist, satisfies the recursive specification; that is,

234 Domain Theory lll: Recursive Domain Specifications

Alist,, = (Nil + (Ax Alist,.)),

Unfortunately this equality doesn’t hold! The problem is that the domain on the right-hand
side uses the one on the left-hand side as a component— the left-hand side domain is a set of
tuples but the right-hand side one is a lifted disjoint union. The situation isn’'t hopeless, how-
ever, as the two domains have the same size (cardinality) and possess the same partial ordering
structure. The two domains aceder isomorphic.The isomorphism is proved by functions
@ : Alist,, — (Nil + (Ax Alist,,)); andW : (Nil + (Ax Alist,)); — Alist,, such that¥’ o @ = idajis;,
and® ¥ = idNiI+(AxAIistx))L- The ® function exposes the list structure inherent in Alist,
element, and th& map gives the tuple representation of list structured objects.

The isomorphism property is strong enough tAlst, may be considered a solution of
the specification. Thé andW maps are used in the definitions of operations on the domain.
For examplehead: Alist,, — Al is defined as:

head= Ax.casesP(x) of isNil() — | [isAxAlist,(a,l) = aend

tail : Alist,, — Alist,, is similar. The mapconstruct Ax Alist,, — Alist,, is construcfa, X)
= W(inAxAlist, (a, X)). These conversions of structure froftfist,, to list form and back are
straightforward and weren’t mentioned in the examples in the previous chapters. The isomor-
phism maps can always be inserted when needed.

The ® and¥ maps are built from theg(, y;) pairs. A complete description is presented
in the next section.

11.2 THE INVERSE LIMIT CONSTRUCTION

The method just described is tlmverse limit constructionlt was developed by Scott as a
justification of Strachey’s original development of denotational semantics. The formal details
of the construction are presented in this section. The main result is that, for any recursive
domain specification of forr® = F(D) (whereF is an expression built with the constructors of
Chapter 3 such th&(E) is a pointed cpo whek is), there is a domaid., that is isomorphic
to F(D.). D, is theleastsuch pointed cpo that satisfies the specification. If you take faith in
the above claims, you may wish to skim this section and proceed to the examples in Section
11.3.

Our presentation of the inverse limit construction is based on an account by Reynolds
(1972) of Scott’s results. We begin by formalizing the relationship betweer;ttzad 1),
maps.

11.1 Ddinition:
For pointed cpos D and D a pair of continuous functionf: D—Ds, g: Di—D) is a
retraction pair iff:

1. gof=idp
2. fogCidp

11.2 The Inverse Limit Construction235

fis called anembeddingand g is called grojection.

11.2 Proposition:
The composition(f, o f;, g; © @) of retraction pairs (f;:D—Ds, g;:Dr—D) and
(fo: Di— Dn, g,: Du— Dy) is itself a retraction pair.

Proof: (g1°g2)°(fef1)=01°(g2°f2)°f1) =gy idp °fy =01 °fy =idp. The proof
that , o f1) ° (g ° g,) Eidp,, is similar. []

11.3 Proposition:

An embedding (projection) has a unique corresponding projection (embedding).

Proof: Let (f, g;) and €,g,) both be retraction pairs. We must show that g,. First,
fog, Eidp, which implies g, cfeg; £g, °idp, by the monotonicity ofg,. But
gpofegy =(gpof)og; =idp °0; =0y, implying g; E g,. Repeating the above deriva-
tion with g; andg, swapped giveg, E g, implying thatg; = g,. The uniqueness of an
embeddind to a projectiorg is left as an exercisd.]

11.4 Proposition:

The components of a retraction pair are strict functions.
Proof: Left as an exercisel]

Retraction pairs are special cases of function p#ifs = D, g: Dr— D) for cposD and
D'. Since we will have use for function pairs that may not be retraction pairs on pointed cpos,
we assign the namepair to a function pair like the one just seen.

11.5 Ddinition:

For cpos D and D, a continuous pair of function§: D —D», g: Dir— D) is called anr-
pairand is written(f,g): D <— D:. The operations on r-pairs are:
1. Composition: fo(f;,g;): D<= Drand(fy, g5): D<= Dn,
(f2,0) © (f1,01) : D<= Dnis defined agf, © f;, 91 © @).
2. Reversal: fo(f,g): D<= Dy, (f,g)R: D<= D is ddined ag(g,f).
The reversal of a retraction pair might not be a retraction pair. The identity r-pair for the
domainD<—D is idp —p = (idp, idp). It is easy to show that the composition and reversal

operations upon r-pairs are continuous. We use the latters, - - - to denote r-pairs.

11.6 Proposition:

236 Domain Theory lll: Recursive Domain Specifications

For r-pairsr: D<>Drand s D: <= Du:
1. (rogR=RoR
2. (®R=r.

Proof: Left as an exercise]

When we build a solution t® = F(D), we build the approximating domaif®; | i=0}
from an initial domainD, by systematically applying the domain constructlbnWe use a
similar procedure to generate the r-paitg, ;) : D; < D;,1 from a starting pair ¢p, V).
First, the domain builders defined in Chapter 3 are extended to build r-pairs.

11.7 Ddinition:
Forr-pairsr=(f,g): C<=>Eand s= (f, g): CG<—Ey, let:

1. rxsdenote:
((Mxy). (F), i(y))), (MxY)- (9(%), 9(¥)))) : CxCi < Ex Es
2. r+sdenote:
((Ax.casex of isC(c) — inE(f(c)) || isCi(c) — inE:(fi(c)) end,
(Ax.casey of isE(e) = inC(g(e)) || isE+(e) = inCi(gi(e)) end))
:C+C <~ E+Er
3. r—sdenote:(AX.ficxo @), (Ay.goyef): (C-C)<=(E—E)
4. (r); denote: (Ax.fX), (Ay.gy): C < E

For D= F(D), the domain expressioR determines a construction for building a new
domainF(A) from an argument domaiA and a construction for building a new r-pai(r)
from an argument r-pait. For example, the recursive specificatilist= (Nil + (Natx Nlist)),
gives a constructiof (D) = ((Nil +(Natx D)), such that, for any cp#, (Nil+ (Natx A)), is also
a cpo, and for any r-pair, (Nil+(Natxr)), is an r-pair. The r-pair is constructed using
Definition 11.7; the r-pairs correspondingid andNatin the example are the identity r-pairs
(idnir» idni) and (dnar idnat), respectively. You are left with the exercise of formalizing what
a “"domain expression” is. Once you have done so, produce a structural induction proof of the
following important lemma.

11.8 Lemma:

For any domain expression F and r-pairsD <~ Dr and s. D1 <~ Du:;
1. Hide—g)=idrE—rE

2. KOS oF(r)=F(se°r)

3. (FOMR=F(F)

4. ifris aretraction pair, then so is)

The lemma holds for the domain expressions built with the domain calculus of Chapter 3.
Now that r-pairs and their fundamental properties have been stated, we formulate the

11.2 The Inverse Limit Construction237

inverse limit domain.

11.9 Ddinition:
Aretraction sequends a pair ({D; | iz 0}, {r;: D; == Dj,1 | i=0}) such that for all &£ O,
D; is a pointed cpo, and each r-pair is a retraction pair.

We often compose retraction pairs from a retraction sequencet, k€D, < D, be defined
as:

[(PRTCIEIIEIC] ifm<n
ton={ idp_—p ifm=n
rﬁo---or%_l ifm>n

To make this clear, let eagh be the r-pair ¢;: D; — D;, 1, ¥;: Di,1— D;) and eacht,,, be the
r-pair @nn: Dm—Dn, m: Dy — D). Then for m<n, trn= @nn, hm)

= (Gn-1,Wn-1) © - ° Omers Wnwa) © (Oms Yim) = (dn-1° "= ° bmer © O,
Ym Yot © °° ° © Pyo1), Which is drawn as:
wm U)m+1 1Pn—l
Dm Dmi1 Dmi2 “+* Dpa Dn
q)m ¢m+1 q)n—l

Drawing a similar diagram for the case whem>n makes it clear that,,= (Bnn Gm)
= (Bym) = tR., so the use of the,,’s is consistent.
11.10 Proposition:

For any retraction sequence and mk= O:

L thnotmEtkn
2. ton° tym=tn, When ek or m=n
3. tynis aretraction pair when mn

Proof: Left as an exercisel]

As the example in Section 11.1 pointed out, the limit of a retraction sequence is built from the
members of th®; domains and the; embeddings.
11.11 Ddinition:
The inverse limit of a retraction sequence:
({Dj =0}, {(¢i,yi): D; <Dy, | i20})

is the set:
DOO:{(XOlX]J Y, Xil t) |f0ra” n> 01 XnEDn and)ﬁ=wn(xn+l)}

238 Domain Theory lll: Recursive Domain Specifications

partially ordered by the relation: for all ¥ D.,, xC y iff for all n=0, x| nSp_y{n.

11.12 Theorem:

D., is a pointed cpo.

Proof: Recall that eachD; in the retraction sequence is a pointed cpo. First,
Io. =(Up,: lp,s "+ Lp,» - - *) € Da, since everyyi(|p)= |p ., by Proposition 11.4.
Second, for any chai@={c; | i€l} in D,, the definition of the partial ordering db.,
makesC,={c;j|n|i€l} a chain inD, with a lub of | |C,, n=0. Now y,(|_|Cn.1)

= L{wn(c L(n+1)) [iET} - L{ciinli€l} = LICy. Hence
(LICo, LICy, - -+, UG, - - *) belongs tdD... It is clearly the lub ofC. []

Next, we show how a domain expression generates a retraction sequence.

11.13 Proposition:

If domain expression F maps a pointed cpo E to a pointed ¢, fhen the pair:

({Di | Do={ L}, Di;1 = F(Dy), fori=0},
{ (@i, wi): Dy =7 Dis1 | oo = (AX. |p,), Yo = (AX. |p,),
(Giv1s Yis1) = F(di,), fori=0)}
iS a retraction sequence.

Proof: From Lemma 11.8, part 4, and mathematical inductign.

Thus, the inverse limiD,, exists for the retraction sequence generate& by he final task is
to show thatD, is isomorphic toF(D,) by ddining functions ®:D, —F(D,) and
¥: F(Dy)— D, such thatt e ® =idp_ and® o W=idgp). Just as the elements Df, were
built from elements of th®;’s, the mapsP andW¥ are built from the retraction pairgi(y;).

Form=0:

tpo - Dm < Do iS:
(Oreer Bom) = (X (B0 (X, Bra (¥), * ~ +, Bi(X), * -+ *)), (AX. X[m))

tem: Do < Dy it (Bem, bhne) = thie
t :D,<>D.is: (0 .0)=(dp_,idp)

You are given the exercises of showing that: D,— D., is well defined and proving the fol-
lowing proposition.

11.14 Proposition:

Proposition 11.10 holds when subscripts are used in place of m and n in thg pairs.
Since each,,, is a retraction pair, the valu@,. (6. (X)) is less defined thareD,,. As m

increases, the approximationsxt®ecome better. A pleasing and important result is thahas
tends towarde, the approximations approach identity.

11.2 The Inverse Limit Construction239

11.15 Lemma:
idDm = I___Ianoo ° Qnm-
m=0

Proof: For every m=0, t,. is a retraction pair, Sof. ° 6., Cidp . Because
{& ° By | =0} is a chain inD,, — D, Ljam °B,m Cidp_ holds. Next, for any
m=0

X= (XO!X11 Ty Xy)E D and any iZO! aoc ° awi(x) = QOC(QXJI(X)) =
(Bo(x!1), Q1 (XL0),..., B (X{D), - -). Sincef;(x|i) = (X{i) = X, eachmth component of

tuple x will appear as themth component in@,,(6. (X)), for all m=0. So x
Lj(ﬂnoo °Bm)(X) = (|:o_|emoo °B.m)(X). By extensionality,idp C |_O_c_|anoo ° B,m, Which
m=0 m=0 m=0

implies the result.[]

11.16 Corollary:

idDm<—>Dac = |_|tmoo °lom
m=0

11.17 Corollary:
idr0.)—F0.) = LIF(tm=) © F(tem)

Proof: idrp,y<—rp,) = F(ildp, <-p_), by Lemma 11.8, part 1
= F(| Jtaee © tom), by Corollary 11.16

= ijgztm °te,m), by continuity

= E:F(tm) ° F(tem), by Lemma 11.8, part 2]

The isomorphism maps are defined as a retraction @aMf in a fashion similar to the r-pairs
in Corollaries 11.16 and 11.17. The strategy is to combine the two r-pairs into one on
D, < F(Dy):

(@, W): Dy = F(Der) = L]ty © tuqmea)
m=

The r-pair structure motivates us to write the isomorphism requirements in the form
(@,)R e (®,W)=idp_«p_ and @, W) (®, ¥)R=idrp)—rp,). The proofs require the
following technical lemmas.

11.18 Lemma:
For any N2 0, F(txm) ° (P, ¥) = tomi)

240 Domain Theory lll: Recursive Domain Specifications

Proof: F(t,pm) ° (®, W)

= F(tom) © LF(tn:) © touy

= LIF(tom) ® F(th) © to(ne1), by continuity

= rﬁ’F(twm © ths) © to(ne1), Dy Lemma 11.8, part 2
= :EjF(tnm) ° te (n+1), Dy Proposition 11.14

= n|;|,t(n+1)<rm1) ° o (ne1)

By Proposition 11.14%,,1ym1) °© t (ne1) = te (me1), fOr n=m. Thus, the least upper bound
of the chain iy, (m,1). [J

11.19 Lemma:
Forany m=0, (@, ¥) ° tmy1ye = F(tme)

Proof: Similar to the proof of Lemma 11.18 and left as an exerc|se.

11.20 Theorem:
(@, W)R o (@, W)= idp_<p_

Proof: (@, W)R o (d, W) = (ng Ftpe) © Lo meny)® © (@, W)
= (] (Fltm) to ms 1)) © (@, W), by continuity ofR

= (ﬁotﬁ(ml) ° F(tme)R) © (@, W), by Proposition 11.6

= (ﬁo tmit)e © F(tem)) © (@, W), by Lemma 11.8, part 3
= Injot(ml)oo o F(tem) © (@, W), by continuity

= ﬁo tme1)ee © togme1), Dy LEMMa 11.18

= ﬁotmw o toms @St © toog tye © Loy

m=0

=idp_ «p_, by Corollary 11.1G"]

11.21 Theorem:
(@, W) © (P, V)R = ide(p,)—F(.)

Proof: Similar to the proof of Theorem 11.20 and left as an exerdisg.

Analogies of the inverse limit method to the least fixed point construction are strong. So

11.2 The Inverse Limit Construction241

far, we have shown th&,, is a “fixed point” of the “chain” generated by a “functional’F.
To complete the list of parallels, we can show tiaf is the “least upper bound” of the
retraction sequence. For the retraction sequefide [(i= 0}, { (¢;, v;) | i=0}) generated by,
assume that there exists a pointed €paand retraction paird:, 1) : D<= F(D1) such that
(1, W) proves thaD:s is isomorphic td=(Ds). Then define the following r-pairs:

tig : Do < Dras (§X. [p.), (AX. [p,))
t'(rml)oo :Dmy1 < Dras @, @) © F(ty,)

Eachty,, is a retraction pair, an@ty,, °t.,, | m==0} is a chain inD,, < D:. Next, define
(o, B): Dy, = Dr to be |i| time © Lo We can show thato(, B) is a retraction pair; that i),
m=0

embeds intd». SinceD: is arbitrary,D,, must be the least pointed cpo solution to the retrac-
tion sequence.

We gain insight into the structure of the isomorphism m@&psnd®¥ by slightly abusing
our notation. Recall that a domain expressions interpreted as a map on r-paifs.is
required to work upon r-pairs because it must “invert” a function’s domain and codomain to
construct a map upon function spaces (see Definition 11.7, part 3). The inversion is done with
the function’s r-pair mate. But for retraction components, the choice of mate is unique (by
Proposition 11.3). So, if r-pair= (f, g) is a retraction pair, Ie(f, g) be alternatively written
as f, Fg), with the understanding that any “inversions” défor g are fulfilled by the
function’s retraction mate. Now the definition @b(®¥), a retraction pair, can be made much
clearer:

(@, %)= || Ftme) © too (mu1)
- m=0

= || F(Bn,0em) © (Qo(rml)' Elrml)oo)

m=0
©

= [(F@ns, FBom) © @ (me1)s Q1))

m=0

= I:O_IO (FQTIOC ° aﬁ(m-i—l)’ qwl)oo ° Fan m)
= (L] Félo- © B2y, L] maayo © o)

We see thatd : D, — F(D.,) maps arx€ D, to an elemenky,1)& D1 and then mapgy,,

to an F-structured element whose components come fiym The steps are performed for
eachm>0, and the results are joined. The actionsfF(D,)— D, are similarly inter-
preted. This roundabout method of getting fr@m to F(D,,) and back has the advantage of
being entirely representable in terms of the elements of the retraction sequence. We exploit
this transparency in the examples in the next section.

11.3 APPLICATIONS

We now examine three recursive domain specifications and their inverse limit solutions. The
tuple structure of the elements of the limit domain and the isomorphism maps give us deep

242 Domain Theory lll: Recursive Domain Specifications

insights into the nature and uses of recursively defined domains.

11.3.1 Linear Lists

This was the example in Section 11.1. For the recursive definfigt= (Nil + (Ax Alist))|,
the retraction sequence i, | n=0}, { (¢, ¥n) | n=0}), where:

Do={1}

Dis1= (Nil+ (Ax Dy));
and

®o: Do—>D1=(Ax.|p,)

Yo : Dy —>Dg=(Ax.]p,)

¢i : Di = Diya = (idni + (ida x ¢i_1)))
= AX.casex of
isNil() = inNil()
[isAxD;,1(a,d) — inAxD;(a, ¢i_1(d)) end

Yi : Diy1 = Dy = (idni + (ida x ¥i_1))|
= AX.casex of
isNil() = inNil()
[isAxD;(a,d) — inAxD;_q (a, yi_1(d)) end

An element inD,, is a list withn or lessA-elements. The maf,,: D, — D,, converts a
list of m (or less)A-elements to one af (or less)A-elements. Ifm>n, the lastm-n elements
are truncated and replaced bylf m<n, the list is embedded intact in@,. An Alist,, element
is a tuplex= (X, X1, - * ", %, - *), where eaclx; is a list fromD; andx; andx;,; agree on
their firsti A-elements, because=y;(X,1). The mapf, : Alist,— D, projects an infinite
tuple into a list ofm elements, ,(X) = X, and@,.,: D,— Alist,, creates the tuple correspond-
ing to anmrelement listty, (1) = (Bo(l), e (1), = - Bam(1)s Gmery, = *), Wherey(l) =1 for
k=m. It is easy to see that any finite list has a unique representatiétisty,, and Lemma
11.15 clearly holds. But why can we tredist,, as if it were a domain of lists? And where are
the infinite lists? The answers to both these questions lie @witilist, — F(Alist,). It is
defined as:

=] (ici + (i x b)), B e
= |i| (Ax.casex of
m=0 isNil() — inNil()
[iSAXDy(a,d) — inAxAlist,, (a, Gy (d))
end)o em(m\ul)

® reveals the list structure in aXlist,, tuple. A tuplexe Alist,, represents:

11.3.1 Linear Lists 243

1. The undefined list whed(x)= | (thenxis (|, |, |, - - *)).

2. Thenil list when®(x) = inNil() (thenxis (|, [nil], [nil], - - -)).

3. A list whose head element B and tail component isl when ®(x) = inAxAlist,, (a, d)
(thenxiis (|, [a,8.0(d)], [a,6:1(d)], - - -, [@8-1)(d)], - - -)). ®(d) shows the list struc-
ture in the tail.

As described in Section 11.1, an infinite list is represented by a tuplech that for all
i=0 x=Xx,1. Eachx&D; is a list withi (or less)A-elements; hence thidh element of the
infinite list thatx represents is embedded in thogesuch that = k. @ finds thekth element: it
is ay, whered(x) = inAxAlist,, (a1, d?), and®(d') = inAxAlist,, (3, d*1), fori> 1.

The inverse map t@® is W: F(Alist,,) — Alist,,. It embeds a list intd\list,, so that opera-
tions like cons AxAlist,— Alist, have well-formed definitions. Foa= A and x€ Alist,.,
W(a, d) = (], [a,6.,00X], [a,6.1(0], - -, [a,6,i-1y(¥)], - -). The isomorphism properties of
@ andW assure us that this method of unpacking and packing tuples is sound and useful.

11.3.2 Self-Applicative Procedures

Procedures in ALGOL60 can take other procedures as arguments, even to the point of self-
application. A simplified version of this situation B¥oc= Proc— A. The family of pointed
cpos that results begins with:

Do={1}
D1=D0—)Al

The argument domain t®;-level procedures is just the one-element domain, and the
members oD; are those functions with graphs of fofng| , a) }, for a€ AL

D,=D; —=A
A D,-level procedure accepi; -level procedures as arguments.

Dis1=Di—A
In general, &D;,-level procedure accepl3-level arguments. (Note th&;_;, Di_,, - - - are

all embedded irD;.) If we sum the domains, the resulf,D;, resembles a Pascal-like hierar-

i=0
chy of procedures. But we want a procedure to accept arguments from a level equal to or
greater than the procedure’s own. The inverse limit's elements do just that.

Consider an elemenpd, p1, - - ", pi, - - *) € Proc,. It has the capability of handling a
procedure argument at any level. For example, an argugpeby; is properly handled bpy,1,
and the result ig,1(qy). But the tuple is intended to operate upon argumentroc,,, and
these elements no longer have “levels.” The solution is simple: take the arguyaeRtoc,,
and map it down to levdD, (that is,,(q)) and applyp; to it; map it down to leveD; (that
is, 6,1(g)) and applyp, to it; . . .; map it down to leveD; (that is,,;(g)) and applyp;,1 to it;

. ..; and lub the results! This geciselywhat® : Proc, — F(Proc,) does:

= L] (e —ida) © By

244 Domain Theory Ill: Recursive Domain Specifications

- QO (X id, © X Bam) © B (e
The applicatiorp(q) is actually @(p))(q). Considerd(p); it has value:
B(p)= L] (x.idy, < X Bom)(6 (musy(P))
= L] @) © B
= Ll (oU(me1)© Gy

= I___loprml ° Bym

Thus:
(@O = (L] P © B-n)(@)
= L Proa(8:m(@)
= L pma(aim)
= ngo Prme1(Cm)

The scheme is general enough that even self-application is understandable.

11.3.3 Recursive Record Structures

Recall that the most general form of record structure used in Chapter 7 was:

Record= Id — Denotable-value
Denotable-value (Recordr Nat+ - - -);

Mutually defined sets of equations like the one above can also be handled by the inverse limit
technique. We introducertuples of domain equations, approximation domains, and r-pairs.
The inverse limit is armtuple of domains. In this example)=2, so a pair of retraction
seguences are generated. We have:

Ry = Unit

Dg = Unit

Ru1=1d—D;

Dis1= (R +Nat+ - -)|, fori=0
and

Rpo: Ry—= Ry = (Ax.|R)

Ryo: Ry = Ro= (Ax. |R)

D¢o: Do —D1=(AX.]p,)

11.3.3 Recursive Record Structure®45

Dyg: D; —Dg= (MX. |p,)

Roi : R = Ri1= (M. Ddj_1 © X o idiq)

Ryi i Riya =R = (AX. Dyj_g o X idig)

D¢i : Dj = Dj,1 = (Rpiy +idnat+ -+ *)|

Dy; : Diy1 = Dy = (Ryj_g +idnae+ -+ 7)), fori> 0

The inverse limits ar&ecord, andDenotable-valug. Two pairs of isomorphism maps result:
(R®, R¥) and O®, DW¥). Elements oRecord, represent record structures that map identifiers
to values inDenotable-valug. Denotable-valug containsRecord, as a component, hence
anyr& Record, exists as the denotable valudiecord,(r). Actually, the previous sentence is
a bit imprecise— Record, + Nat+ - -)| contains Record, as a component, and an
reRecord, is embedded irDenotable-valug by writing DW(inRecord,(r)). Like all the
other inverse limit domaind)enotable-valug and Record, are domains of infinite tuples,
and the isomorphism maps are necessary for unpacking and packing the denotable values and
records.

Consider the recursively defined record:

r=[[A] +=inNatzerg]1[[B] = inRecord.(r)](Ai. |)

Record r contains an infinite number of copies of itself. Any indexing sequence
(r[BIIB] - - ‘MBI producesr again. SincdRecord, is a pointed cpo, the recursive definition
of r has a least fixed point solution, which is a tupléRacord,. You should consider how the
least fixed point solution is calculated Record, and why the structure afis more complex
than that of a recursively defined record from a nonrecursive domain.

SUGGESTED READINGS

Inverse limit construction: Plotkin 1982; Reynolds 1972; Scott 1970, 1971, 1972; Scott &
Strachey 1971

Generalizations & alternative approaches: Adamek & Koubek 1979; Barendregt 1977,
1981; Gunter 1985a, 1985b, 1985c; Kamimura & Tang 1984a; Kanda 1979; Lehman &
Smyth 1981; Milner 1977; Scott 1976, 1983; Smyth & Plotkin 1982; Stoy 1977; Wand
1979

EXERCISES

1. Construct the approximating domaibg, D,, D, . . ., D;,; for each of the following:

N= (Unit+N);
Nlist= IN| x Nlist
Mlist= (N x Mlist),
P=P—B,
Q=(Q—=B)|

o0 T

246 Domain Theory Ill: Recursive Domain Specifications

Describe the structure @i, for each of the above.

2. Define the domaib = D — (D + Unit),. WhatD., element is the denotation of each of the
following?

a.
b.

0d.])
(Ad.inD(d))

c. f=(nd.inD(F)

3. LetNlist= (Nat‘“)l andNatlist= (Unit + (Natx Natlist)), .

a.
b.

What lists doeBlatlist have thalNlist does not?

Definecons: Natx Nlist— Nlist for Nlist. Is your version strict in its second argu-
ment? Is it possible to define a versionaunsthat is nonstrict in its second argu-
ment? Define @onsoperation foNatlist that is nonstrict in its second argument.
Determine the denotation ofENlist in |=zeroconsl and of |ENatlist in

| = zeroconsl.

A lazy listis an element oNatlist that is built with the nonstrict version afons.
Consider the list processing language in Figure 7.5. MakeAtbendomain beNat,

and make thé.ist domain be a domain of lazy lists of denotable values. Redefine the
semantics. Write an expression in the language whose denotation is the list of all the
positive odd numbers.

4. One useful application of the domaitatlist= (Unit + (Natx Natlis9), is to the semantics
of programs that produce infinite streams of output.

a. Consider the language of Figure 9.5. Let its domfaiswerbe Natlist Redefine the

command continuationsfinish: Cmdcont to be finish = (As.inUnit()) and
error : String— Cmdconto beerror = (At.As.]). Add this command to the language:

Clprint E] = Aeic.E[E](An.As.inNatxNatlist(n, (c9)))

Prove for e&Environment c&Cmdcont and s&Store that C[while

1do print O] e csis an infinite list ofzercs.

Construct a programming language with a direct semantics that can also generate
streams. The primary valuation functions &g: Program— Store — Natlist and

Cp: Command — Environment— Store — Poststore where Poststore= Natlist

x Store. (Hint: make use of an operatiastrict: (A— B) — (A — B), whereB is a
pointed cpo, such that:

strict(f)(|)= |g, thatis, the least element B
strict(f)(a) = f(a), for a proper valuac A

Then define the composition of command denotatfpgs Store— Poststoreas:

g«f=hs.(M(l, p)- (A(I+, p). (lappendi, p)(strict(g)(p)))(fs)

where append Natlistx Natlist— Natlist is the list concatenation operation and is
nonstrict in its second argument.) Prove tBaf while 1 do print O] e sis an infinite

Exercises 247

list of zercs.

Define a programming language whose programs map an infinite stream of values and
a store to an infinite stream of values. Define the language using both direct and con-
tinuation styles. Attempt to show a congruence between the two definitions.

The specification of recordin Section 11.3 is incomplete because the isomorphism
maps are omitted. Insert them in their proper places.

How can recursively defined records be used in a programming language? What
pragmatic disadvantages result?

Why does the inverse limit method require that a domain expreg&inD = F(D)
map pointed cpos to pointed cpos?

. Why must we work with r-pairs when an inverse limit domain is always built from a
sequence of retraction pairs?

Can a retraction sequence have a donijrthat is not{|}? Say that a retraction
sequence ha®y = Unit|. Does an inverse limit still result? State the conditions
under which B could be used a®, in a retraction sequence generated from a
domain expressiok in D= F(D). Does the inverse limit satisfy the isomorphism? Is
it the least such domain that does so?

Show the approximating domaidg, D4, . . . ,D; for each of the following:

i. D=D—D

i. D= Dl — Dl

ii. D=(D—D),

Recall the lambda calculus system that was introduced in exercise 11 of Chapter 3.
Once again, its syntax is:

E:= (E1E) | (MBI

Say that the meaning of a lambda-expressidrE] is a function. Making use of the
domain Environmenk ldentifier— D with the usual operations, define a valuation
functionE : Lambda-expressior Environment= D for each of the three versions of

D defined in part a. Which of the three semantics that you defined is extensional; that
is, in which of the three does the property “(for alE], E[(E; E)] = E[(E; E)])
impliesg[E;] = E[E,]" hold? (Warning: this is a nontrivial problem.)

For each of the three versions®Bfthat you defined in part b, prove that theule is
sound, that is, prove:

E[(M. E1)Ex] = E[[Eo/I]E,]

. Augment the syntax of the lambda-calculus with the abstraction fovad [.E). Add
the following reduction rule:

ﬁval'rl.”e: 0\.V8.| l. El)EZ > [Ez/l]El
whereE, is not a combinationE; E,r)

248 Domain Theory Ill: Recursive Domain Specifications

8.

10.

Define a semantics for the new version of abstraction for each of the three versions of
valuation function in part b and show that theal-rule is sound with respect to each.

For the definitiorD = D — D, show that an inverse limit can be generated starting from
Do = Unit} and thatD, is a nontrivial domain. Prove that this inverse limit is the smallest
nontrivial domain that satisfies the definition.

Scott proposed the following domain for modelling flowcharts:

C= (Skip+ Assign Comp+ Cond,

whereSkip= Unit represents thekip command
Assignis a set of primitive assigment commands
Comp= C x C represents command composition
Cond= Boolx C x C represents conditional
Boolis a set of primitive Boolean expressions

a. What relationship does domafb have to the set of derivation trees of a simple
imperative language? What “trees” are lacking? Are there any extra ones?

b. Letwh(b, ¢) be theC-valuewh(b, ¢) = inCondb, inComgc, wh(b, c)), inSkig)), for
ce C andb&Bool Using the methods outlined in Section 6.6.5, draw a tree-like pic-
ture of the denotation aivh(by, ¢y). Next, write the tuple representation of the value
as it appears i, .

c. Define a functionsem C— Store — Store that maps a member o to a store
transformation function. Define a congruence between the domBow and
Boolean-expr and betweehssignand the collection of trees of the form §E].
Prove for allb& Bool and its corresponding [B] and fare C and its corresponding
[C] that senfwh(b, c)) = C[while B do C]].

The domainl = (Decx |)i’ whereDec={0, 1, - -, 9}, ddines a domain that contains
infinite lists of decimal digits. Consider the interval [0,1], that is, all the real numbers
between 0 and 1 inclusive.

a. Show that every value in [0,1] has a representatidn ifHint: consider the decimal
representation of a value in the interval.) Are the representations unique? What do the
partial lists inl represent?

b. Recall that a number in [0,1] igtional if it is represented by a valum/n for
m,n€ IN. Say that anl-value isrecursiveif it is representable by a (possibly recur-
sive) function expressiof= a. Is every rational number recursive? Is every recursive
value rational? Are there any nonrecursive valud®in

c. Call adomain valuganscendentaif it does not have a function expression represen-
tation. State whether or not there are any transcendental values in the following
domains. (N has none.)

i. NxN

i. N—>N
i, Nlist= (N x Nlist)|

Exercises 249

iv. N=(Unit+N)

11. Just as the inverse limd,, is determined by its approximating domaibs, a function
g:D,—=C is determined by a family of approximating functions. Let

G=

{g;:D;j = C | i=0} be a family of functions such that, for a# 0, g;,1 ° ¢; = g;. (That

is, the maps always agree on elements in common.)

a.
b.

Prove that for alil= 0, g; >y E gj,1-

Prove that there exists a uniggeD,, — C such that for ali=0, g- g, = g;. Callgthe
mediating morphism for Gand writeg= med G

For a continuous functionh:D, —C, define the family of functions

H={hi:Di—>C | i=0, hi=hoeoo}-

i. Show thath;,; ° ¢; = h; for eachi=0.
ii. Prove thath= medHand thatH = { (medH-f, | i=0}.

Thus, the approximating function families are in 1-1, onto correspondence with the
continuous functions iD,, — C.

Define the approximating function family for the maml: Alist— A, Alist =
(Unit + (Ax Alist))|, hd = Al casesb(l) of isUnit() — | [isAxAlist(a, I) —aend.
Describe the graph of eatid,.

Letp;: D; — B be a family of continuous predicates. Prove that foriald, p, holds

for deb;, (that is, p(d)=true) iff med{p |i=0}(d)=true, where
d=(dg,dq, - - -, di, - - -):Ds. Conversely, leP: D, — B be a continuous predicate.
Prove thaP holds for ade D, (that is,P(d) = true) iff for all i=0, P> .(d,) = true.
Results similar to those in parts a through c¢ hold for function families
{f;:C—D; | i=0} such that for ali= 0, f; = y; ° fi,1. Prove that there exists a unique
f. C— D, such that for ali=0, f, = 6,; °f.

Chapter 12

Nondeterminism and Concurrency

A program isdeterministicif its evaluations on the same input always produce the same out-
put. The evaluation strategy for a deterministic program might not be unique. For example,
side effect-free arithmetic addition can be implemented in more than one fashion:

1. Evaluate the left operand; evaluate the right operand; add.
2. Evaluate the right operand; evaluate the left operand; add.
3. Evaluate the two operands in parallel; add.

A program isnondeterministidf it has more than one allowable evaluation strategy and
different evaluation strategies lead to different outputs. One example of a nondeterministic
construct is additionvith side effects, using the three evaluation strategies listed above. If an
operand contains a side effect, then the order of evaluation of the operands can affect the final
result. This situation is considered a result of bad language design, because elementary arith-
metic is better behaved. It is somewhat surprising that the situation is typically resolved by
outlawing all but one of the allowable evaluation strategies and embracing hidden side effects!

There are situations where nondeterminism is acceptable. Consider an error-handling
routine that contains a number of commands, each indexed by a specific error condition. If a
run-time error occurs, the handler is invoked to diagnose the problem and to compensate for it.
Perhaps the diagnosis yields multiple candidate error conditions. Only one correction com-
mand is executed within the handler, so the choice of which one to use may be made nondeter-
ministically.

A concept related to nondeterminismparallel evaluation Some language constructs
can be naturally evaluated in parallel fashion, such as side effect-free addition using the third
strategy noted above. This “nice” form of parallelism, where the simultaneous evaluation of
subparts of the construct do not interact, is caleminterfering parallelism.In interfering
parallelism,there is interaction, and the relative speeds of the evaluations of the subparts do
affect the final result. We call @oncurrent languagene that uses interfering parallelism in its
evaluation of programs. The classic example of a concurrent language is an imperative
language that evaluates in parallel commands that share access and update rights to a common
variable.

We require new tools to specify the semantics of nondeterministic and concurrent
languages. A program’s answer denotation is no longer a single @ditoen a domairD, but
a set of values §y, d;, - - -, dj, - - - } describing all the results possible from the different
evaluations. The set of values is an element frompineerdomainP (D). The powerdomain
corresponds to the powerset in Chapter 2, but the underlying mathematics of the domain-based
version is more involved. The members ofdf(must be related in terms of both subset pro-
perties and the partial ordering propertiesDof Unfortunately, there is no best powerdomain
construction, and a number of serious questions remain regarding the theory.

Section 12.1 describes the properties of the powerdomain construction, and Section 12.2

250

12.1 Powerdomains 251

uses it to model a nondeterministic language. Section 12.3 presents one approach to model-
ling interfering parallelism. Section 12.4 presents an alternative approach to nondeterministic
and parallel evaluation, and Section 12.5 gives an overview to the mathematics underlying
powerdomain construction.

12.1 POWERDOMAINS

The powerdomairconstruction builds a domain of sets of elements. For dorAathe power-
domain builder IP() creates the domain IR], a collection whose members are S¥{SA. The
associated assembly operations are:

@: IP(A), a constant that denotes the smallest element #&).IP(
{_}: A—=1IP(A), which maps its argumemi= A to thesingleton sef a}.

_U_IPA)xIP(A)—IP(A), the binary unionoperation, which combines its two arguments
M={ag,as, - -} and N={bg, by, - -} into the set
MUN={ao,a1, ey bO’bla - }

The disassembly operation builder for powerdomains converts an operatiof+ on
elements into one on R}-elements.

For f: A—IP(B), there exists a unique operatidh: IP(A) — IP(B) such that for any
Me P@A), f* (M) = J{ f(m) | meM}.

The operation builder can be applied to operatigng\— B to produce a function in the
domain IPA) — IP(B): use a.{g(@)})"*.

12.2 THE GUARDED COMMAND LANGUAGE

A well-defined programming language depends on explicit evaluation strategies as little as
possible. Imperative languages require sequencing at the command level to clarify the order of
updates to the store argument. The sequencing is critical to understanding command composi-
tion, but it need not be imposed on the other command builders. As an example, a useful gen-
eralization of the conditional commanfiB then C; elseC, is the multichoicecasescom-

mand:

cases
Bl: Cl’
Bz . Cz,

Bn: C,

252 Nondeterminism and Concurrency

A command ¢is executed when test; Bvaluates tarue. A problem is that more than ong B

may hold. Normally, we want only one command in t@sesconstruct to be evaluated, so we
must make a choice. The traditional choice is to execute the “first'r€ding from “top to
bottom,” whose test Bholds, but this choice adds little to the language. A better solution is
to nondeterministically choose any one of the candidate commands whose test holds. In
Dijkstra (1976), this form of conditional naturally meshes with the development of programs
from formal specifications. As an exercise, we define a denotational semantics of the impera-
tive language proposed by Dijkstra.

Dijkstra’s language, called thguarded command languagis, an assignment language
augmented by the nondeterministic conditional command and a nondeterministic multitest
loop, which iterates as long as one of its tests is true. The language is presented in Figure 12.1.

The domain of possible answers of a nondeterministic computation is a powerdomain of
post-store elements. The operation of primary interegiés,which sequences two nondeter-
ministic commands. The semantics of an expresdipthént)(s) says thaff; operates ors,
producing a set of post-stores. Each post-store is passed thiptggproduce an answer set.

The answer sets are unioned.

The functionality of theC valuation function points out that a command represents a non-
deterministic computation. The semantic equations for the conditional and loop commands
both use an auxiliary valuation functidnto determine if at least one of the testuiérd9 of
the construct holds. In the case of the conditional, failure of all guards causes an abortion;
failure of all the guards of the loop construct causes exit of the loop. G fenction defines
the meaning of a conditional/loop body. The updates of all the guarded commands whose
tests hold are joined together, and a set of stores result.

Here is a small example. For:

Co=G1] G

G =X=20—Y:=1

Gy,=X=0—Y:=0
we derive:

CI[Col = CIG11 G2

=AS.T[G1]] Go]ls— G[G1]] G,]s| aborts

=AS.(B[X=0]s) or(B[X=0]s) — G[G [| Go]s[aborts
(B[X=0]s) or (B[X =0]s) must betrue, so we simplify to:

AS.G[G1]| Go]s=As.(B[X=0]s— C[Y: =1]s] noanswey

join (B[X =0]s— C[Y:=0]s || nhoanswey

Consider a storg, such that écces§X] o) is greater tharzero. Then the above expression
simplifies to:

(CLY: =1]s) join noanswer

= return(s;) U &, wheres, = (updatd Y] one g)
={inStords))} UYJ

Similarly, for a storesgy such that &cces§X] s¢) is zero, we see that the expression

12.2 The Guarded Command Languag253

Figure 12.1

Ce Command
Ge Guarded-command
EE€ Expression

B& Boolean-expression

| € Identifier

= C,:C, | I:=E | if Gfi | doGod
G.[G,|B—~C

Semantic algebras:

I.-1V. Truth values, identifiers, natural numbers, and stores

(the usual definitions)

V. Results of nondeterministic computations

DomainspE Poststore- (Store+Errvalue)
whereErrvalue= Unit
a€ Answek P(Poststore)
Operations

no-answer Answer
no-answeg J

return: Store—= Answer
return= As.{in Storgs) }

abort: Store— Answer
abort= As.{inErrvalug() }

join: Answek Answer> Answer
a; joina,=a;Uay
then (Store— Answej x (Store—= Answe} — (Store— Answej
f; thent = (Ap.case9p of
isStorgs) — f5(9)
[isErrvalug)) — {in Errvalug() }
end)f of;

Valuation functions:

C: Command-— Store— Answer

C[C4:C.] = C[C,] thenC[C.]

C[I: =E] = As. return(updatdl] (E[E] 9))

C[if Gfi] = As.T[G] s— G[G] s|| aborts

Cl[doGod] = fix(AfAs. T[G] s— (G[G] then)(s)]| returng

254 Nondeterminism and Concurrency

Figure 12.1 (continued)

T: Guarded-commane> Store— Tr
T[G11 G2l = As.(T[G1]9)or (T[G2]9)
T[B — C] = B[B]
G: Guarded-commang Store—=Answer
G[G1[G2] = As.(G[G1]9)join (G[G-]s)
G[B — C] = As.B[B] s— C[C] s]| no-answer

E:Expression- Store— Nat (usual)
B: Boolean-expfr= Store— Tr (usual)

simplifies to:

(CLY:=1]sp)join (C[Y: =0]s0)
= return(si1) join return(s.,)
wheres; = (updatdY] onesy) ands, = (updatd Y] zerosy)
= {inStords)} U{in Storgs) }
= {inStords), inStords,) }
You may have noticed that the phrase $iords;)} <& was not simplified to
{in Stords;) } in the first simplification. This step was omitted, for the propeaty @ = a, for

ac P(A), doesnot hold for all of the versions of powerdomains! This discouraging result is
discussed in Section 12.5.

12.3 CONCURRENCY AND RESUMPTION SEMANTICS

As mentioned in the introduction, there are two kinds of parallelism: noninterfering and
interfering. The modelling of noninterfering parallelism requires no new concepts, but model-
ling interfering parallelism does. When assignments evaluate concurrently on the same store,
the result is a set of possible result stores, and the powerdomain construction is needed.
Further, we require a technique for representing the operational aspects of concurrency in the
semantics. We follow Plotkin’'s method, which depicts the concurrent evaluation of com-
mands G and G by interleaving the evaluation steps of @ith those of G. This leads to a
form of denotational definition callegsumption semantics.

Figure 12.2 shows a simple imperative language augmented by a parallel evaluation
operator ||. The language’s assignment statemerdrigiterruptableand has exclusive rights
to the store. We treat a noninterruptable action as the “evaluation step” mentioned above. The
evaluation of G || G interleaves the assignments of @ith those of G. A semantics of
C1 |1 G generates the set of results of all possible interleavings. Here are some example

12.3 Concurrency and Resumption Semanti@$5

Figure 12.2

Abstract syntax:

PE Program

Ce Command
EE€ Expression
B& Boolean-expr
| € Identifier

P:=C.
=I=E | C;C, | G || & | if BthenC; elseC, | whileBdo C

@]
x

program fragments and an informal description of their actions.

12.1 Example:

[X:=X+1] is an ordinary assignment. Given a store argument, the command updates
[XI's cell. No other command may access or alter the store while the assignment is per-
formed.

12.2 Example:

[X:=X+2; X:=X-1] is a compound command. Although each of the two assignments
receives exclusive rights to the store when executing, another command operating in
parallel may interrupt the composition after the evaluation of the first assignment and
before the evaluation of the second. Thus, the compositiontisemantically equivalent

to [X:=X+1]. Consider [(X=X+2; X:=X-1) || (X=3)]. The possible interleavings of

this concurrent command are:

X:=X+2; X:=X-1; X:=3
X:=X+2; X:=3; X:=X-1
X:=3; X:=X+2; X:=X-1

Each of the interleavings yields a different output store. Command composition must
have a denotational semantics that is different from the ones used in previous chapters.

12.3 Example:

[(if X=0thenY:=1elseY:=2) || (X=X+1)]. The evaluation of the test of a conditional is
noninterruptable. The possible evaluation sequences are:

for X having an initial value okera

256 Nondeterminism and Concurrency

test X=0; Y:=1; X:=X+1
test X=0; X:=X+1; Y:=1
X:=X+1; test X=0; Y:=2

for X having an initial positive value:
test X=0; Y:=2; X:=X+1
test X=0; X:=X+1; Y:=2
X:=X+1; test X=0; Y:=2

12.4 Example:

[(X:=1;while X>0doY:=Y+1) || (X=0)]. Like Example 12.3, a command executing
concurrently with avhile-loop may be interleaved with the loop’s evaluation sequence.
When [X] is zero, the loop terminates, so the interleaving of0§ into the loop’s
evaluation becomes critical to the result of the program. The possible evaluation
sequences are:

X:=0; X:=1; test X>0; Y=Y+1; test X>0; Y=Y+1; - - -
X:=1; X:=0; test X>0

X:=1; test X>0; X=0; Y:=Y+1; test X>0

X:=1; test X>0; Y=Y+1; X:=0; test X>0

X:=1; test X>0:; Y=Y+1; test X>0; X=0; Y:=Y+1; test X>0
X:=1; test X>0; Y=Y+1; test X>0; Y=Y+1; X:=0; test X>0

These evaluation sequences are cafld because the assignment Q] eventually
appears in the evaluation sequence. A fair evaluation (dff G eventually evaluates
both G and G. An unfair sequence would evaluate the loop all its nonterminating way
and then “perform” [X: =0]. The resumption semantics assigned to this example will
include the fair sequences plus the unfair sequence just mentioned.

As we saw in Example 12.2, even apparently sequential constructs are impacted by possi-
ble outside interference. The denotation of a command can no longer be a map from an input
to an output store but must become a new entityesumption. Figure 12.3 presents the
semantic algebra of resumptions.

A resumption can be thought of as a set of interruptable evaluation sequencedelat
resumption and be a store. If consists of just a single step, as in Example 189),is (a set
containing) a new store, that is, {8torés) }. If r is a single sequence of steps, as in Example
12.2,r(s) is not the application of all the steps $obut the application of just the first of the
steps, producing (a set containing) a new store plus the remaining steps that need to be done,
that is, {inStorexRegs,)}, where s' is the store resulting from the first step arids the
remainder of the steps. This structure is necessary so that the interleaving of other evaluation
sequences, that is, other resumptions, can be handled if necessary. When resungjtiots
a parallel evaluation, as in Examples 12.3 and 12.4ontains a number of evaluation
sequences, angs) is a nonsingleton set of partial computations.

12.3 Concurrency and Resumption Semanti@s7

Figure 12.3

IV. Resumptions
Domainsp & Pgm-state- (Storer (Storex Reg)
r€ Res= Store— IP(Pgm-statg)
Operations

step: (Store— Store — Res
step= Af.As.{in Stordfs)}

pause Res— Res
pause= Ar.As.{in StorexRegs, r) }

*:RexRes—Res
ry*ro = (Ap.casey of
- isStorgs) — {in StorexRegs, r,) }
[isStorexRegs,) —{in StorexRegs, rvry) }
end) orq

par: Rex Res— Res
ry parr, =As.(r{ thenn)(s) U (r, thenr)(s)
wherethen Rexx Res— Resis
ry thenr, = (Ap.case9 of
isStords) — {in StorexRegs, r») }
[isStorexRegs, r) — {in StorexRegs, rithenn) }
U {in StorexRegs, r, thenrn)}

end) or;

flatten: Res— Store— P(Store)
flatten= Ar.(Ap.casesp of
isStords) —{ s}
[| isStorexRegs, ri) — (flatten r)(s)
endf or

The operations upon resumptions show how resumptions are defined from atomic
actions, paused to allow interleavings, sequentially composed, interleaved, and evaluated to an
answer set. The first of these constructionsstiep, which builds a single step evaluation
sequence that immediately and noninterruptedly performs its actions upon a store. A sequence
r that can be interrupted before it performs any action at all is definegdysér), which
holds its store argument without applying anyrdb it. The expression, *r, is the composi-
tion of the evaluation steps of resumptionwith the steps of,. The interleaving of resump-
tions is defined byar. A resumption is converted into a set of noninterruptable evaluation
sequences bflatten. The expressionflatten n(s) evaluates each of the sequences with s
to an output store. The result is a set of stores.

258 Nondeterminism and Concurrency

The valuation functions are specified in Figure 12.4.

The denotation of a command in the language is a resumption because the command
might be embedded in a parallel evaluation. If so, the command’s evaluation sequence would
have to be interleaved with the other parts of the parallel construction. Once the command is
completely built into a program, the resumption is flattened into the family of possible evalua-
tion sequences that it represents. Since a conditional can be interrupted after its test and before
its clauses are evaluated, thauseoperation must be inserted to create an explicit interrupt
point. The loop is handled similarly.

The E andB functions are not written in the resumption style. As we saw in Chapter 9,
the sequencing aspects of a language may be specified at certain levels and ignored at others.
The language in Figure 12.4 interleaves evaluation steps only at the command level. Nonethe-
less, expression resumptions can be introduced, just as expression continuations were intro-
duced to augment command continuations in Chapter 9. This is left as an exercise.

You should determine the denotations of the commands in Examples 12.1 through 12.4.

12.4 AN ALTERNATIVE SEMANTICS FOR CONCURRENCY

Although we have given a denotational semantics to a concurrent language, the definitions of
the resumption operations are far too complex. The problem is that our function notation is
ill-suited for representing multivalued objects; at most, one function can “own” an argument.
In a description of a concurrent language, more than one function competes for the same
argument— in Figure 12.4, it was the computer store. We seek a natural way of describing

Figure 12.4

P: Program- Store— P(Store)

P[C.] = flatten(C[C])

C: Command- Res

C[I: =E] = step(rs. updatdl] (E[E] S) 9)

CIC1:Ca] = CIC4] * C[C-]

CIC1 1G] = CI[C4] parC[C-]

C[if B then C; elseC,] = AsB[B] s— (paus€C[C1]) 9) [| (pausdC[C,]) s)
C[while B do C] = fix(Af.As.B[[B] s— (pausdC[C] =f) s) [| (stepAs.9 9))
E: Expression- Store— Nat (like Figure 5.2)

B: Boolean-expr= Store— Tr (like Figure 5.2)

12.4 An Alternative Semantics for Concurrencg59

this competition.

Consider a generalization of function notation such that more than one function can be
applied to, or choose to communicate with, an argument. Further, the argument may choose
which function it wishes to interact with. This recalls Hewitt's actor theory (Hewitt & Baker
1978).

We must make some notational changes. First, the application of a function to an argu-
ment is no longer written af$a), as we will have situations in which both andf, desire the
samea. We ‘“specialize” the) in f=Ax.M to name gport or argument path by using Greek

lettersa, B, vy, - - - in place of theé\. The argument is marked with the same Greek letter with a
bar over it. Thus, the applicatioaX.M)(a) becomes¢x.M) | (@a), and, in the general case,
(ax1.M)) | - - - | (ax,-Mp) | (c@) describes the situation where all of the functiois;(M,),

<+, (MX,-Mp,) wish to usea, but only one of them will receive it.

The notation that we are developing is calledCalculus for Communicating Systems
(CCS), and it was defined by Milner. Lack of space prevents us from giving a complete
presentation of CCS, so you should read Milner's book (Milner 1980). We will study the
basic features of CCS and see how the parallel language of the previous section can be
described with it.

The syntax of CC®ehavior expressioris given in Figure 12.5.

Consider the BNF rule for behavior expressions. The first two forms in the rule are the
generalized versions of function abstraction and argument application that we were consider-
ing. Note that the argument constriRE.B is generalized to have an argumé&snd a bodyB,
just like an abstraction has. Once the argument Bainds to some abstraction, the boBy
evaluates. Abstractions and arguments are symmetrical and autonomous objects in CCS. The
third form, B, | By, is parallel composition; behavior expressidisandB, may evaluate in
parallel and pass values back and forth. The behavior expreBsiBy represents nondeter-
ministic choice: eitheB; or B, may evaluate, but not bottiB;=B, represents sequential
evaluation; at the end d&;’s evaluationB, may proceed. Th# construct is the usual condi-
tional. The behavior expressi@gP hides the porP in B from outside communicatiorB§P
cannot send or receive values along frrso any use oP must be totally withirB. B[P;/P,]

Figure 12.5

B& Behavior-expression
E€ Function-expression
P Port

| € Identifier

B:=PIB | PE.B | B;|B, | By+B, | BB,
| ifEthenB elseB | B&P | B[Py/P,] | nil

E ::= (defined in Chapter 3)

260 Nondeterminism and Concurrency

renames all nonhidden occurrences of gestto P;. Finally, nil is the inactive behavior
expression.

What is the meaning of a behavior expression? We could provide a resumption seman-
tics, but since we wish to forgo resumptions, we follow Milner’s lead: he suggests that the
meaning of a behavior expression is a tree showing all the possible evaluation paths that the
expression might take. The arcs of suctommunication treare labeled with the values that
can be sent or received by the behavior expression. Some examples are seen in Figure 12.6.
Nondeterministic and parallel composition cause branches in a communication tree. An inter-
nal communication of a value within a behavior expression produces an arc labeled by a
symbol. Actually, the trees in Figure 12.6 are overly simplistic because they use identifiers on
the arcs instead of values. A completely expanded rendition of expression 2 in that figure is:

azero oone ce fol]

Bzero yone Pone ytwoBi Y(ipluson
Y Y Y

because the behavior expression is a function®MNat The communication tree represents
the “graph” of the behavior expression.

Like function graphs, communication trees are somewhat awkward to use. Just as we use
simplification rules on function expressions to determine the uniqgue meaning of an expression,
we use inference rules on behavior expressions to determine an evaluation path in a behavior
expression’s communication tree. Inference rules for CCS and some useful equivalences for
behavior expressions are given in Figure 12.7. An axi#%t B: says that on reception of\a
value along porfi, behavior expressioB progresses t8:. An inference rule:

B'1 -‘I-Li Bll

Bz -HX> Bl2

says that if behavior expressi@ can progress t8; via communicatiornuv, then expression
B, can progress td@, with the same communication. An equivalenBe= B: says that
behavior expressio® may be rewritten toB: (without any communication) since both
expressions represent equivalent communication trees. The descriptions of the rules and trees
are necessarily brief, and you are referred to Milner’s book.

We can put the inference rules to good use. Here is a derivation of a path in the commun-
ication tree for expression 3 in Figure 12.6:

(an.nil) | (Bm.a(m plus ong nil)
Bwo (on. nil) | (@(two plus ong nil), by Com (1), Act— (1)
= (an.nil) | (a(thred. nil)

12.4 An Alternative Semantics for Concurrencg61

Figure 12.6

Behavior expression Communication tree

1) nil

(2) an. ((En. nil) + (y(x plus ong. nil))

(3) (an.nil) | (BmM.a(m plus ong nil)
on

pm
a(m plus ong an

a(mplusong

4) ((an.nil) | (Bm.a(m plus ong nil))8a

(5) ((otwo. nil) = (ax.ﬁx. ni)[v/B]

an

y(nplus ong

pm
T (internala
communication)

a(mplusong

an

pm

T (internala
communication)

atwo

ax

262 Nondeterminism and Concurrency

Figure 12.7

Inference rules:

Act—

Com—

Sum—

Seq~

Con—

Res—

Rel—

(1) ox.B< [v/X]B

(2) av.BX
(1) By % By

whereu may be either or a,

By | By X% By | B,

2) B, &% Br,

By | B, By | By

1 B, X% B
(1 1

Bl+ Bz -l-% Bll

B, X% By

Bl*Bz-l-Li Bll*Bz

1) By % By

if true then B else B X% By,

BX B

B8o Y% Bi&a

BX B

Blv/u] X5 B[y/u]

Equivalences:
B |B,=B>|B;

(3) B1 X By

epP

B, % B,

B1 [B2 5By | By

(2) B, &% Br,

Bl + BZ -LAX> Bl2

2) B, &% Br,

if false then B else B X4 B,

whereu is notin {a, o}

nl+B=B
nil«B=B

(B1|B2) | Bs=By | (B2 | B3)
nil | B=B

B;+B,=B,+B;
(B1+By)+B3 =B +(By + Bs)

(B1 # By) % Bg = By * (B * Bg)

Zsnil | nil, by Com (3), Act— (3)

12.4 An Alternative Semantics for Concurrencg63

= nil

and the path istwo, t. The path shows a result of supplying the arguntesaton thep port

to the behavior expression. From here on, we will only be interested in deriving paths that
contain no instances of external input or output; all value communication will be internal.
These “closed derivations” correspond to the simplification sequences built for function
expressions. The behavior expression just given does not have a closed derivatipricio
some value must be given to tBeport. The following expression does have a closed deriva-
tion to nil:

(an. nil) | (BmM.a(m plus ong nil) | (Etwo. nil)
= (an.nil) | (o (two plus ong nil) | nil

(an. nil) | (a(threé. nil) | nil

Zsnil | nil | nil

nil

a

We will also allow named behavior expressions, and the namings may be recursive. For
example:

binary-semaphore a(). (). binary-semaphore

describes a simple binary semaphore. The argument values transmitted alangate(3-
ports are from theJnit domain. Named behavior expressions can be abstracted on function
expression values. For example:

counting-serfn) = if n equals zero
thenf(). counting-serfone
else((af). counting-serfn minus ony)

+ (B(). counting-serfn plus ong)

is a definition of a counting semaphore. The rewriting rule for recursively named behavior
expressions is the usual unfolding rule for recursively defined expressions.

The CCS-based semantics of the language in Figure 12.4 is given in Figure 12.8. The
store is managed by a semaphore-like behavior expression, which transmits and receives the
store from communicating commands. The new semantics is faithful to the one in Figure 12.4
because it treats assignments as noninterruptable primitive commands, allows interleaving of
commands in parallel evaluation, and admits interleaving into a conditional command between
the test and the selected clause. A derivation of a program denotation is seen in Figure 12.9.

The CCS-based denotation makes the competition for the store easier to see and the pos-
sible outcomes easier to determine. Although the resumption semantics provides a precise
function meaning for a parallel program, the CCS version provides a depiction that is easier to
read, contains many operational analogies, and has a precise meaning in communication tree
form.

264 Nondeterminism and Concurrency

Figure 12.8

Abstract syntax:

Pe Program
Ce Command
E€ Expression
Be& Boolean-expr
P:=C.
C:=C;;C |G || G | I:=E |if B then C, elseC, | while B do C

Semantic algebras: (usual)

Store manager behavior expression:

sem(s) = as.us. sen(s)

Valuation functions:

P: Program-> Behavior-expression
P[C.] = As.C[C] | sents)
C: Command- Behavior-expression
CIC4:Ca] = CIC4] =+ C[C-]
CIC1|1GI =CIC41 | CIC]
C[l: =E] = as.w(updatd1] (E[E] S) S). nil
C[if B then C; elseC,] = as. if B[B] s thenus.C[C+] elseus.C[C>]
C[whileBdoC] =f
wheref = as. if B[B] s thenus.(C[C] *f) elseus. nil

12.5 The Powerdomain Structure265

Figure 12.9

Let
B\ stand foras.u(updatgl] NI[N]J s). nil
in
P[X:=0 || X:=1;if X=0thenY:=0elseY:=1] =
As.Byo | Bx1 * Byt | senfs)
whereBj; = as. if (acces§X] s) thenus. Byg elseus.By1

A derivation is:

(As.Bxo | Bx1 * Bt | senfs))(so)
Bxo | Bx1 * Byt | senfsp)
Bxo | Bx1 * Byt | asg. us. sengs)
I5 Byo | w(sy)- nil = By | us. sents) wheres, = (updatgX] one g)
= Bxo | nil #Bjs | senfs;)
Byo | as.if(acces§X] s) equals zerothen- - | as;.us. sengs)
25 Byg | if (acces§X] s1) equals zerothen: - | us. senfs)
= Byg | if false thenus;. Byg elseus;. By | us. sengs)
= Bxo | By1 | senfsy)
s.u(updatdX] zero9.nil | By; | as;.us. sengs)
Isu(sp). nil | Byy | us. sents) wheres, = (update[X] zerog)
= nil | By; | senfsy)
s.u(updatd Y] one$.nil | as,.us. sengs)

a

a

s u(sz). nil | us. sents) wheres; = (updatd Y] ones)
Zsnil | sentsg)
= sentss).

12.5 THE POWERDOMAIN STRUCTURE

We conclude this chapter by studying the mathematics of powerdomain construction. As men-
tioned in the introduction, there is no “best” version of a powerdomain. This is because the
clash between the subset properties of the powerdomain and the partial ordering properties of
its component domain can be resolved in several ways. We present the methods in two stages:
we first construct powerdomains from domains that have trivial partial order structure, and
then we generalize to arbitrary domains. The first stage is straightforward, but the second is
somewhat involved and only an overview is given. Plotkin’s and Smyth’s original articles
give a complete presentation.

266 Nondeterminism and Concurrency

12.5.1 Discrete Powerdomains

A domain A with a trivial partial ordering (that is, for ath,b€A, acb iff a=b ora=]) is
called aflat domain. Powerdomains built from flat domains are caltésicrete powerdomains.
Examples of flat domains are N, INNxIN, Identifier, Identifier— IN, and (dentifier—IN) |,
butnot Identifier— IN| or IN;xIN. A flat domain has almost no internal structure.

The first method builds the set-of-all-sets construction from a flat domain.

12.5 Ddinition:

For a flat domain D, the discrete relational powerdomain of D, writkg(D), is the col-
lection of all subsets of proper (that is, ndi-elements of D, partially ordered by the
subset relatiorc .

Let =z stand for the partial ordering relatién on P;(D). In preparation for the construction
of relational powerdomains from nonflat domains, we note that fok &€ P (D):

AR B iff for every a€ A there exists some& B such thab & b

This property ties together the structural and subset properties of elements in the power-
domains. The only element in the flat domain that might have caused structural problems,
| €D, is handled by making it “disappear” from the construction og(P). Thus, the
domain IRy(N) is identical to IR(N)): both are just the powerset of IN, partially ordereddy

In the relational powerdomain, the consté@htdoes indeed stand for the empty set in the
domain. As an exercise, you are asked to show that the associated assembly and disassembly
operations are continuous.

The relational powerdomain construction is a natural one for a cpo lag¢kiyhen used
with a pointed cpo, it ignores the possibility of nontermination as a viable answer. For this
reason, the relational powerdomain is useful in those cases where only partial correctness
issues are of primary concern. The domain works well with the semantics in Figure 12.1,
because the property U d=d is necessary to supply the expected semantics for conditional
and loop commands.

The relational powerdomain is inadequate for modelling operational concerns. Jf the
element of a flat domain is introduced into the elements of the powerdomain, the result is an
Egli-Milner powerdomain.

12.6 Ddinition:

For a pointed cpo D, the discrete Egli-Milner powerdomain of D, writkg, (D), is the
collection of nonempty subsets of D which are either finite or conftapartially ordered
as follows: for all ABE Pgy (D), ASgy B iff:

1. Forevery &A, there exists somed such that a&p b.
2. Forevery EB, there exists some=A such that & b.

The construction only operates upon pointed cpos. All sets in the powerdomain are nonempty,
because an element denotes a set of possible results of a computation, and the empty set has

12.5.1 Discrete Powerdomains267

no significance, for it contains no results, not evenThe infinite elements of the power-

domain contain to show that, if a computation has an infinite set of possible results, it will

have to run forever to cover all the possibilities, hence nontermination is also a viable result.
A partial drawing of Ry (N)) is:

NU{ |}
{ zerqgone two, - - -,i, | }

{ zerq one two}
{ zerq one two, | }
{ zerq one} { one two}
{zergong |} { ongtwo, |}
{ zero} { one} { two}
{zera|} {one|} {two |}
{1}

The subset ordering is restricted to those relations that are computationally feasible. We read
an element fng, mp, - - -, m,} not containing| as the final result of a computation. An ele-
ment {my, my, - - -, My, | } may be read as either a partial result of a computation, where
denotes a lack of knowledge about the remaining output values, or as the final result of a com-
putation that might not terminate. Thuspe | } £ { one two, three}, as | is “completed”

to { two, three}, but { one} Z{ one two}, as the output information in the seibhe} is com-

plete. Also, the least upper bound of the chain}{{ zerq | }, { zergone |}, - - -, must be

N U{ |}, rather than N (if N were indeed in B,(N))), for (NU { | }) Zgm N, and since all
elements of the chain possess the property of “noncompletion of output,” so must the least
upper bound.

In the Egli-Milner powerdomain, the consta@trepresents the set|{}. A consequence
is that dU d doesnot equald. You should show that the singleton and union operations are
continuous and that the operatifinis continuous whefis continuous and strict.

The Egli-Milner powerdomain is useful for analyzing the operational properties of a
language. For this reason, it is the choice for supplying the semantics of the concurrent
language in Section 12.3.

The final example of discrete powerdomain uses the third variant of partial ordering on
set elements.

12.7 Ddinition:

For a flat domain D, the discrete Smyth powerdomain of D, wrilggfD), is the collec-
tion of finite, nonempty sets of proper elements of D along with D itself, partially ordered

268 Nondeterminism and Concurrency

as follows: for all ABEIPs(D), ACs B iff for every =B there exists some=A such that
atpb

SinceLCg is the inverse o, ACg B iff BC A. The reverse subset ordering suggests that a set
B is better defined thaA whenB's information is more specific thaft's. Computation upon a
Smyth powerdomain can be viewed as the process of determiningcahabtbe an answer.

A nonterminating computation rules out nothing; that is, virtually anything might result.
Thus,D is the least defined element ins). A partial drawing of R(N)) is:

{ two} { one} { zero}
{onetwo} { zergtwo} { zergone}
{ zerq one two} { zerqg one three}

NU{])

As with the Egli-Milner powerdomain, the value ¢Ud is not d—it is @! This is
because represents the s&. The Smyth powerdomain is appropriate for total correctness
studies, that is, results that are valid only if the program examined always terminates. The
guarded command language of Section 12.2 was designed by Dijkstra to be understood in
terms of total correctness. He introduced an assertion language and described the actions of
commands in terms of their assertion transformation properties. The semantics of the
language in Figure 12.1 igot faithful to Dijkstra’s ideas when the Smyth powerdomain is
used. You are given the exercise of rewriting the semantics of the language to match
Dijkstra’s intentions.

12.5.2 General Powerdomains

We now generalize the discrete powerdomain constructions to handle nonflat domains. The
problems inherent in handling nonflat domains are examined first, and the general versions of
the three powerdomains are presented.

Let us begin with the generalization of the relational powerdomain. We would like to
define the relational powerdomain of an arbitrary donfaiim a fashion similar to the discrete
version: the elements of d¥D) should be the subsets of proper element® obrdered by the
relation formulated earlierAcg B iff for all acA there exists some&B such thatay b.
Unfortunately, this or-dering leads to:

12.8 Problem:

Cr is not a partial ordering. As an example, for proper elemeptsl, €D such that
d; & d,, both {d,} =x{d;,d>} and {d;,d>}=x{d,}. The reason for this
equivalence is that the total information contents of the two sets are identical. This

12.5.2 General Powerdomains269

example shows the clash of the structur®afith the subset properties of the powerset.

We might attempt a solution by grouping together those sets that are equivalent with
respect to the orderingg. Let IPD)/ R, thequotient oflP(D) with respect tozg, be the sets
of proper elements dd grouped into collections callezfjuivalence classesiwo setsA andB
are in the same equivalence classAff; B andBCx A. The equivalence classes are partially
ordered bycy: for equivalence classeB,Q& P(D)/ck, Pc Q iff for all AEP and BEQ,
AR B. Let [A] represent the equivalence class containing thésefP(D). We can define the
operations:

J: P([D)/ck denotes {}]
{_}: D—=IP(D)/cg mapsdeD to [{d}]
U:PD) ez xIP(D)/=x = P(D)/=% is [A]U [B] = [AU B]

Least upper bounds in the domain are determined by set union: for aCkdipA] | i€ 1},
LICis [U{ A |iE€l}]; the proof is left as an exercise. Unfortunately, this quotient domain
isn't good enough.

12.9 Problem:

The singleton operation is not continuous. For example&iD is the least upper bound
of the chain {d |i€l} in D, then [|{[{ di}]|i€l} =[YU{{d}|iEl]]

= [{ d; | i€1}], but this not the same equivalence class ag}{. We can also show that
the usual definition of" for continuousf is also discontinuous. The quotient relation is
inadequate; a set such as}{must belong to the same equivalence class ds|{E 1},
because both have the same information content.

We must define a quotient relation that better describes the total information content of
sets of elements. The best measure of information content was introduced in exercise 20 of
Chapter 6: it is the topological open set. Recall thatS$kett-topologypon a domairD is a
collection of subsets dd known asopen setsA setUCD is open in the Scott-topology dd
iff:

1. U is closed upwards, that is, for evedg € D, if there exists someal; € U such that

d; & d,, thend, € U.

2. If de U isthe least upper bound of a chdirin D, then somee& Cis in U.

An open set represents a property or an information level. Clause 1 says tha&t i
has enough information to fulfill property, then so must ang, such thatd, =, d,. Clause 2
says that if| |C& U satisifes a property, it is only because it contains some piece of informa-
tion c € C that makes it so, and must satisfy the property, too. These intuitions are justified
by exercise 20 of Chapter 6, which shows that a functidh— E is partial order continuous
iff fis topologically continuous on the Scott-topologiesioandE.

Here is a domain with its open set structure “drawn in”:

270 Nondeterminism and Concurrency

Simp= b c

Each semicircular region represents an open set. The open s&snpfare {b}, { c},
{ab,c}{] ab,c}{b c}(why?),andd (why?).
A more interesting example is:

Ord =)

two
one

Zero

Note that {w} is not an open set, for it is the least upper bound of the chain
{ zerq one two, - - - }, and whenevem belongs to an open set, so must one of the members
of the chain. An open set inOrd is either empty or has the structure
{], (plusong, (jplustwg, - - -, w}.

The open sets of a domalihdefine all the properties dd. The total information content
of a set of elements from can be precisely stated by listing all the open sets to which the ele-
ments of the set belong. For s&BC D, say that:

ACR Biff for every a€ A and open sét) C D, if aE€ U, then there exists lac B such that
be U as well

Further, say that:
A= Biff Acg BandBCRrA

That is, the elements & andB belong to exactly the same collection of open setS.ilNote
that AR B implies ACk B. We use the relatior g to define the equivalence classes in the

12.5.2 General Powerdomains271

general powerdomain construction. The relation equates a chain with a set containing the
chain’s least upper bound. This solves Problem 12.9.
An alternative presentation @y is done without topological concepts; farBC D:

ACR Biff for all continuous functions: D— Unit|, f(A) Sz f(B)

The definition is equivalent to the topological one, for the open sets of a ddbnaig in one-
to-one correspondence with the continuous functiori3+a Unit, .

12.10 Ddinition:

For domain D, the (general) relational powerdomain of D, writteg(D), is the collec-
tion of the subsets of the proper elements of D, quotiented by the retatiopartially
ordered bycr. The associated operations are defined as:

@:IPr(D) denoted{}]

{_}: D—=Pr(D) mapsc& Dto[{ d}]

U: IPr(D)x PR(D)— Pr(D) is[A]U [B] = [AU B]

for f: D— PRr(E), f* :IPr(D) — Pr(E) is f'[A] = [|{ f(a) | acA}]

The operations are well defined and continuous, and least upper bound corresponds to set
union: | [{[A][i€1} =[U{A |i€I}]. Examples of relational powerdomains are:

Pr(Simp= [{ ab,c},{ bc}] PrOrd)= [{o}{j...,kon}
{]j,jplusongjplustwqg
[{ab}{b}] [ac}{cl] b o]
[{a}l
[{}] [{i} {ongj},

{ongtwo,j}, -]

[{ two}, { one two}]
[{ one}]
[{}]

Note the difference between ©(d)/cz and I (Ord): the former makes a distinction
between sets containing and infinite sets without it, but the latter does not, since both kinds
of sets have the same total information content. It is exactly this identification of sets that
solves the continuity problem. You should construg(P) for various examples of flat
domains and verify that the domains are identical to the ones built in Section 12.4.

272 Nondeterminism and Concurrency

In summary, we can think of the powerdomair(B) as the set of all subsets bf but
must also remember that some sets are equivalent to others in terms of total information con-
tent. This equivalence becomes important when the assembly and disassembly operations
associated with the powerdomain are defined, for they must be consistent in their mapping of
equivalent sets to equivalent answers.

The general Egli-Milner powerdomain, also called the Plotkin powerdomain, is con-
structed along the same lines as the general relational powerdomain. Differences exist in the
sets of elements included and in the quotient relation applied. Since the powerdomain is
operationally oriented, sets of elements are chosen that are computationally feasible. Recall
that not all subsets dd-elements were used in the discrete Egli-Milner powerdomain: infinite
sets included|. A general definition of acceptable set starts from the notion of a finitely
branching generating tree:

12.11 Ddinition:

A finitely branching generating tree for domain D is a finitely branching, possibly infinite
tree whose nodes are labeled with elements of D such that for all nodes m and n in the
tree, if m is an ancestor to n, them m'’s labebis n’s label.

Such a tree represents a computation history of a nondeterministic program. The requirement
of finite branching forcebounded nondeterminismat any point in the program there exists
at most a finite number of possible next computation steps. A path in the tree is a possible
computation path; the sequence of labels along a path represent partial outputs; and the least
upper bound of the labels along a path represents the final output of that computation. The set
of possible outputs for a program is the set of least upper bounds of all the paths of the gen-
erating tree. Call this set fnitely generable setand letF4(D) be all the finitely generable
sets of domaid. The sets used to build the Egli-Milner powerdomain BgeD).

Here are some examples of finitely branching generating trees and their corresponding
finitely generable sets. For domabrd and trees:

T1l=two T2= zero
three five one two three
eight nine o four five six

seven eight

The paths generated froirl aretwo, three; two, five, eight; two, five, ninendtwo, five,w.
The finitely generable set istireg eight nine w}. For T2, the finitely generable set is
{n] (nmodthreg=zero} U{ w}. The o element is the least upper bound of the infinite path
zero, three, six, nine; - -. For domain IIY and tree:

12.5.2 General Powerdomains273

zero |

one il

the finitely generable set iszerg one two, - - -, | }. We can prove that any finitely generable
infinite set for domain IN must contain|: if the set is infinite, its generating tree has an
infinite number of nodes; by Konig’'s lemma, the tree must have an infinite path. The proof
that this path must bg, |, |, - - - is left as an exercise.

Problems 12.8 and 12.9 also arise if the elemé&g(®) are ordered bygy. The topol-
ogy of domainD again comes to the rescue: #®BC D, ACgy B iff:

1. Foreveryac Aand open sdtdC D, if ac U, then there exists sonte= B such thabe U
as well. .

2. For everybe B and open set) C D, if b is in U’s complementJ, then there exists some
a€ A such thale U as well.

Condition 1 was seen in the previous section. Condition 2 states tlBaisifinadequate in
information content with respect to one of its elemem{sis inadequate in a similar way.
Thus, A can reach an answer in “no better way” thBncan. The two conditions are embo-
died in the claim:

ACew Biff for all continuous functions: D— Unit|, f(A) Szm f(B)
We say thatA= EM B iff AEEM B andB CEM A

12.12 Ddinition:
For a pointed cpo D, the general Egli-Milner powerdomain of D, writiég, (D), is the
collectionF4(D) quotiented by the relation gy, partially ordered byzgy.

The definitions of the associated operations are left as exercises.
The general version of the Smyth construction follows the lines of the Egli-Milner con-
struction. The sets used to build the domain are agg(D). For allA,BC D, say that:

AtgBiiff for every be B and open set) C D, if be U, then there exists sonse A such
thatac U as well

This is clause 2 of theggy, definition, so:
ALs Biff for all continuous functiorf: D— Unity, f(A) Es (B)
LetA= IS B iff AES B andB Cs A

274 Nondeterminism and Concurrency

12.13 Ddinition:

For pointed cpo D, the general Smyth powerdomain of D, wriRg(D), is the collection
Fq4(D) quotiented by the relatios s, partially ordered bycs.

The operations upon §fD) are the expected ones.

SUGGESTED READINGS

Nondeterminism & parallelism: Apt & Olderog 1984; Apt & Plotkin 1981; Dijkstra 1976;
Hennessy & Plotkin 1979; Hewitt & Baker 1978; Main & Benson 1984; Park 1981

CCS: Milner 1980, 1983, 1985

Powerdomains: Abramsky 1983; Nielsen, Plotkin, & Winskel 1981; Plotkin 1976, 1982a,
1982b; Smyth 1978, 1983

EXERCISES

1. a. Draw IR(D), IPey(D), and IR(D) for each of the followingD:

i. N

i. N

ii. B;xB)
iv. B—B
V. B—>Unitl

b. Draw:

iii. Ps(Ps(B)))

2. For a flat domairD, model a seAc IP(D) as a functionA: D — Unit; such thatde D
belongs tAA iff A(d)= ().

a. Define the appropriate functions faf, { _}, U_. To which version of discrete
powerdomain i — Unit; isomorphic?

b. What goes wrong when usin: D — B and saying thad € A iff A(d) = true? What
goes wrong when the definition in part a is applied to nonflat domains?

3. Revise the semantics of the guarded command language of Figure 12.1 so that
Answer= IPs(Poststorg. Rewrite the valuation functions so that a command [C] that
always terminates with a stosg has denotatio€[C] sp =

4. Redefine the semantics of tlie statement in Figure 12.4 so that interruption and

10.

11.

12.

13.

Exercises 275

interleaving may not occur between evaluation of the test and the first step of evaluation
of the chosen clause. Do the same with the semantiésrofigure 12.8.

(Plotkin) Extend the syntax of the language of Figure 12.2 to incladiédal CJ, a criti-
cal region construct. Define the resumption and CCS semantics for the construct so that
[C] evaluates to completion without interruption.

a. Let C[skip] = stegAs.9 be added to the language in Figure 12.4. Show that
Cl skip;skip] = C[skip], but thatP[skip;skip] = P[skip].

b. Let the CCS semantics of the construct Be[skip]=nil; show that
C[[skip;skip]] = C[skip]-

Give two commands in the language of Figure 12.8:

a. That have the same semantics for the relational powerdomain but different semantics
for the Egli-Milner and Smyth powerdomains.

b. That have the same semantics for the Smyth powerdomain but different semantics for
the Egli-Milner and relational powerdomains.

Consider the domain of expression resumptions:
Expr-res= Store— IP((Expressible-valug Storg + (Storex Expr-reg)

a. UseExpr-resto define the semantics of interleaved evaluation of expressions E ::=
E1+E2 | N | l.

b. Integrate the semantics you defined in part a with the language in Figure 12.4.

c. Repeat parts a and b using CCS semantics and the semantics in Figure 12.8.

a. Show (or describe) all the closed derivations of the program in Figure 12.9. Draw the
corresponding behavior tree, showing just the closed derivations.

b. Using the semantics in Figure 12.8, draw the behavior tree denotatioG§Xo&0]
andCJif X:=0thenY:=0elseY:=1].

Rewrite the semantics of the guarded command language using CCS.

Use resumption semantics to redefine the semantics of the PROLOG-like language of
Figure 9.3 so that the denotation of a program is a set of all the possible successful
evaluation strategies that a program can take. Repeat the exercise for CCS semantics.

Give a resumption semantics to the CCS notation. Prove the soundness of the derivation
rules in Figure 12.7.

a. What similarities exist between the resumption semantics method of Section 12.3 and
the behavior trees model of Section 12.4? What are the primary differences?

b. What similarities exist between behavior trees and finite generating trees? What are
the primary differences?

276 Nondeterminism and Concurrency

14. Prove that thé__}, U_andf* operations are well defined in Definition 12.10; that is,
show that the choice of representativeandB in [A]U [B] and f*[A] do not affect the
result.

15.

16.

17.

18.

19.

20.

Attempt to solve Problem 12.9 by definideg B iff | |[{a |ac€A} £ | [{b | beB}.
What goes wrong?

A setUC Ais (Scott-)closedif A-U is open in the Scott-topology ok

a.

Prove that) C Ais closed iff;

i. Foralld, eeA, if dEU andecdthenecU.
ii. Forall directedd CA, DCU implies| |[DEU.

Prove that if cp@ is pointed, the relational powerdomairg {R) is isomorphic to the
collection of all the nonempty closed subsetsAgpartially ordered by subset inclu-
sion.

Why must: D — IP(E) be strict to buildf* : IP(D) — IP(E) in the case of the Egli-
Milner and Smyth powerdomains?

What problems arise in building and using the Egli-Milner and Smyth powerdomains
whenD is not pointed?

Forx,ye IP(D), for which versions of the powerdomains do the following hold?

coo0oTy

XC XUy
xUyLC X
x={x} O
TJ=x O
XU X=X

Consider (D), a variant of the relational powerdomain such that the elements con-
sist of all subsets of a cpD, quotiented by= g, partially ordered bycg. What is
unsatisfactory about @#(D)?

In a similar fashion, comment on the suitability ofJR(D), built from all subsets of
D, quotiented by g\, partially ordered byEgy -

In a similar fashion, comment on the suitability o§#®), built from all the subsets
of D, quotiented by: g, partially ordered bycg.

For each of the powerdomain constructions, attempt to define a continuous function
in:DxIP(D)— B such that for allde D, UCD, din[U]=true iff deU. (Hint:
first attempt to definen for the discrete powerdomains and then generalize.)
For each of the powerdomain constructions upon which you succeeded in défining
for all deD, U,VCD:

i. Attempt to showdin ([JUJU[V]) = trueiff din [U] = trueordin [V] = true.
ii. Attempt to define a continuous functiom: IP(D)x IP(D)— IP(D) such that
din (JUIN[V]) = trueiff din [U] = trueanddin [V] = true.

Bibliograpy

The bibliography that follows was prepared originally with a software program cediied
that is no longer available. As a result, the raw bibliography must be reproduced here.

%A S. K. Abdali %T A lambda-calculus model of programming languages— jumps and functions %J J. of Com-
puter Languages %V 1 %D 1975 %P 303-320

%A H. Abelson %A G. Sussman %T Structure and Interpretation of Computer Programs %l MIT Press/McGraw-
Hill %C New York %D 1984

%A S. Abramsky %T On semantic foundations for applicative multiprogramming %B LNCS 154: Proc. 10th
ICALP %C Berlin %I Springer %D 1982 %P 1-14

%A S. Abramsky %T Experiments, powerdomains, and fully abstract models for applicative multiprogramming
%B LNCS 158: Foundations of Computation Theory %l Springer %C Berlin %D 1983 %P 1-13

%A J. Adamek %A V. Koubek %T Least fixed point of a functor %J Journal of Computer and System Sciences
%V 19 %D 1979 %P 163-178

%A A. Aho %A J. D. Ullman %T Principles of Compiler Design %l Addison-Wesley %C Reading, Mass. %D
1977

%A E. R. Anderson %A F. C. Belz %T Issues in the formal specification of programming languages %B Formal
Description of Programming Concepts %E E. J. Neuhold %l North-Holland %C Amsterdam %D 1978

%A E. R. Anderson %A F. C. Belz %A E. K. Blum %T SEMANOL (73): A metalanguage for programming the
semantics of programming languages %J Acta Informatica %V 6 %D 1976 %P 109-132

%A D. Andrews %A W. Henhapl %T Pascal %B Formal Specification and Software Development %E D. Bjdrner
and C. Jones %l Prentice-Hall %C Englewood Cliffs, N.J. %D 1982 %P 175-252

%A A. Appel %T Semantics-directed code generation %B Proc. 12th ACM Symp. on Prin. of Prog. Lang. %C
New Orleans %D 1985 %P 315-324

%A K. R. Apt %T Equivalence of operational and denotational semantics for a fragment of Pascal %B Formal
Descriptions of Programming Concepts %E E. J. Neuhold %l North-Holland %C Amsterdam %D 1978 %P
141-163

%A K. R. Apt %T Ten years of Hoare’s logic: a survey— part | %J ACM Trans. on Prog. Lang. and Systems %V
3 %D 1981 %P 431-483

%A K. R. Apt %T Ten years of Hoare’s logic: a survey— part II: nondeterminism %J Theoretical Computer Sci-
ence %V 28 %D 1984 %P 83-110

%A K. R. Apt %A A. Olderog %T Proof rules and transformations dealing with fairness %J Science of Comp. Pro-
gramming %V 3 %D 1983 %P 65-100

%A K. Apt %A G. D. Plotkin %T A Cook’s tour of countable nondeterminism %B LNCS 115: Proc. 9th ICALP
%I Springer %C Berlin %D 1981 %P 479-494

%A M. A. Arbib %A E. G. Manes %T The pattern-of-calls expansion is the canonical fixpoint for recursive

277

278 Bibliograpy

definitions %J Journal of the ACM %D 1982 %V 29 %P 577-602

%A E. Artesiano %A G. Costa %T Languages with reducing reflexive types %B LNCS 85: Proc. 7th ICALP %l
Springer %C Berlin %D 1980

%A E. A. Ashcroft %A W. W. Wadge %T Lucid, a nonprocedural language with iteration %J Comm. of the ACM
%V 20 %D 1977 %P 519-526

%A E. A. Ashcroft %A W. W. Wadge %T Prescription for semantics %J ACM Trans. on Prog. Lang. and Sys.
%V 4 %D 1982 %P 283-194

%A L. Augustsson %T A compiler for lazy ML %B Proc. ACM Conf. on LISP and Functional Programming %C
Austin, Texas %D 1984 %P 218-227

%A J. Backus %T Can programming be liberated from the von Neumann style? A functional style and its algebra
of programs %J Comm. of the ACM %V 21 %D 1978 %P 613-641

%A J. W. deBakker %T Recursive programs as predicate transformers %B Formal Descriptions of Programming
Concepts %E E.J. Neuhold %l North-Holland %C Amsterdam %D 1978 %P 165-181

%A J. W. deBakker %T Mathematical Theory of Program Correctness %l Prentice-Hall %D 1980 %C Englewood
Cliffs, N.J.

%A H. Barendregt %T The type free lambda calculus %B Handbook of Mathematical Logic %E J. Barwise %l
North-Holland %C Amsterdam %D 1977 %P 1091-1132

%A H. Barendregt %T The Lambda Calculus— Its Syntax and Semantics %l North-Holland %C Amsterdam %D
1981

%A H. Barendregt %T Introduction to lambda calculus %J Niew Archief Voor Wiskunde %V 4 %D 1984 %P
337-372

%A W. A. Barrett %A J. D. Couch %T Compiler Construction: Theory and Practice %l S.R.A. %C Chicago %D
1979

%A D. W. Barron %T An Introduction to the Study of Programming Languages %Il Cambridge University Press
%C Cambridge %D 1977

%A F. L. Bauer %A H. Wossner %T Algorithmic Language and Program Development %l Springer %C Berlin
%D 1982

%A D. M. Berry %T Remarks on R. D. Tennent's language design methods based on semantic principles %J Acta
Informatica %V 15 %D 1981 %P 83-98

%A D. M. Berry %T A denotational semantics for shared memory parallelism and nondeterminism %J Acta Infor-
matica %V 21 %D 1985 %P 599-628

%A G. Berry %T Some syntactic and categorical constructions of lambda calculus models %J Report 80 %l
INRIA %C Sophia Antipolis %D 1981

%A G. Berry %A J.-J. Levy %T A survey of some syntactic results of the lambda calculus %B LNCS 74: Proc. 8th
Symp. Math. Foundations of Computer Science %l Springer %C Berlin %D 1979 %P 552-566

%A G. Berry %A P.-L. Curien %T Sequential algorithms on concrete data structures %J Theoretical Computer
Science %V 20 %D 1982 %P 265-322

Bibliograpy 279

%A G. Berry %A P.-L. Curien %A J.-J. Levy %T Full abstraction for sequential languages: the state of the art %D
1982 %B Proc. French-American Seminar on Semantics %C Fontainebleau, France %D 1982

%A R. S. Bird %T Programs and Machines %l Wiley %C New York %D 1976

%A G. Birkhoff %T Lattice Theory, 3rd Edition %l American Mathematical Society %C Providence, R.l. %D
1967

%A D. Bjérner %T The Vienna development method %B LNCS 75: Mathematical studies of information process-
ing %I Springer %C Berlin %D 1978 %P 326-359

%0Q Bjdrner, D., ed. %T LNCS 86: Abstract Software Specifications %l Springer %C Berlin %D 1980

%A Bjdrner, D., ed. %T Formal Description of Programming Concepts Il %! North-Holland %C Amsterdam %D
]
1983

%A D. Bjérner %A C. B. Jones, eds. %T LNCS 61: The Vienna Development Method: the Metalanguage %l
Springer %C Berlin %D 1978

%A D. Bjdérner %A C. B. Jones %T Formal Specification and Software Development %! Prentice-Hall %C Engle-
wood Cliffs, N.J. %D 1982

%A D. Bjdrner %A O. N. Oest %T LNCS 98: Towards a formal description of Ada %I Springer %C Berlin %D
1980

%A A. Blikle %A A. Tarlecki %T Naive denotational semantics %B Proc. IFIP Congress 83 %l North-Holland
%C Amsterdam %D 1983 %P 345-356

%A J. Bodwin %A L. Bradley %A J. Kanda %A D. Little %A U. Pleban %T Experience with an experimental
compiler-compiler based on denotational semantics %B Proc. SIGPLAN 82 Symp. on Compiler Construction,
SIGPLAN Notices %V 17 %D 1982 %P 216-229

%Q Bohm, C., ed. %T LNCS 37: Lambda-calculus and Computer Science Theory %l Springer %C Berlin %D
1975

%A P. Branquart %A G. Louis %A P. Wodon %T LNCS 128: An Analytical Description of CHILL, the CCITT
High Level Language %l Springer %C Berlin %D 1982

%A S. D. Brookes %T A fully abstract semantics and a proof system for an ALGOL-like language with sharing
%B LNCS: Proc. Workshop on Foundations of Programming Semantics %l Springer %C Berlin %D 1985a

%0Q Brookes, S. D., A. W. Roscoe, and G. Winskel, eds. %T LNCS 197: Seminar on Concurrency %l Springer
%C Berlin %D 1985

%A W. H. Burge %T Recursive Programming Techniques %I Addison-Wesley %C Reading, Mass. %D 1975

%A R. Burstall %T Proving properties of programs by structural induction %J Computer Journal %V 12 %P 41-48
%D 1969

%A R. Burstall %A J. Darlington %T A transformation system for developing recursive programs %J Journal of
the ACM %V 24 %P 44-67 %D 1977

%A R. Burstall %A J. Goguen %T Putting theories together to make specifications %B Proc. 5th Int. Joint Conf.
on Artificial Intelligence %C Cambridge, Mass. %D 1977 %P 1045-1058

280 Bibliograpy

%A R. Burstall %A J. Goguen %T Algebras, theories, and freeness: an introduction for computer scientists %B
Proc. Marktoberdorf Summer School on Theoretical Foundations of Programming Methodology %D August 1981

%A R. M. Burstall %A D. B. MacQueen %A D. T. Sannella %T HOPE: an experimental applicative language %R
CSR-62-80 %I Computer Science Dept., Edinburgh University %C Edinburgh, Scotland %D 1981

%A H. Christiansen %A N. D. Jones %T Control flow treatment in a simple semantics-directed compiler %B For-
mal Descriptions of Programming Concepts || %E D. Bjérner %l North-Holland %C Amsterdam %D 1983 %P
73-97

%A A. Church %T The Calculi of Lambda Conversion %I Princeton Univ. Press %C Princeton, N.J. %D 1951

%A T. J. Clarke %A P. J. Gladstone %A C. D. MacClean %A A. C. Norman %T SKIM— the S, K, | reduction
machine %B Proc. ACM LISP conference %D 1980 %P 128-135

%A J. C. Cleaveland %T Mathematical specifications %J ACM SIGPLAN Notices %V 15-12 %D 1980 %P 31-42

%A J. C. Cleaveland %A R. C. Uzgalis %T Grammars for Programming Languages %! Elsevier %C New York
%D 1977

%A W. Clinger %T Foundations of actor semantics %R Ph.D. thesis, Al lab report AI-TR-633 %I MIT %D 1981

%A W. Clinger %T Summary of the Scheme 311 compiler: an exercise in denotational semantics %B Proc. ACM
Symp. on LISP and Functional Programming %C Austin, Texas %D August, 1984 %P 356-364

%A A. J. Cohn %T The equivalence of two semantic definitions: a case study in LCF %J SIAM J. of Computing
%V 12 %D 1983 %P 267-285

%A P. M. Cohn %T Universal Algebra (rev. ed.) %I D. Reidel Pub. %C Boston %D 1981

%A B. Courcelle %A |. Guessarian %T On some classes of interpretations %J J. of Computer and System Sciences
%V 17 %D 1978 %P 388-413

%A P. Cousot %A R. Cousot %T Abstract interpretation: a unified lattice model for static analysis of programs %B
Poc. 4th ACM Symp. on Prin. of Prog. Lang. %C Los Angeles %D 1977 %P 238-252

%A P. Cousot %A R. Cousot %T Systematic design of program analysis frameworks %B Proc. 6th ACM Symp.
on Prin. of Prog. Lang. %C San Antonio, Texas %D 1979 %P 269-282

%A P.-L. Curien %T Categorical combinatory logic %B LNCS 194: Proc. 12th ICALP %Il Springer %C Berlin
%D 1985 %P 130-139

%A H. B. Curry %A R. Feys %T Combinatory Logic, Vol. 1 %Il North-Holland %C Amsterdam %D 1958

%A J. Darlington %A P. Henderson %A D. Turner, eds. %T Functional Programming and its Applications %l
Cambridge Univ. Press %C Cambridge %D 1982

%A A. Demers %A J. Donohue %A G. Skinner %T Data types as values: polymorphism, type-checking, and
encapsulation %B Proc. 5th ACM Symp. on Prin. of Prog. Lang. %D 1978 %C Tucson, Arizona %P 23-30

%A K. J. Devlin %T Fundamentals of Contemporary Set Theory %l Springer %C Berlin %D 1979
%A E. W. Dijkstra %T A Discipline of Programming %l Prentice-Hall %C Englewood Cliffs, N.J. %D 1976

%A J. Donahue %T LNCS 42: Complementary Definitions of Programming Language Semantics %! Springer %C

Bibliograpy 281

Berlin %D 1976
%A J. Donahue %T Locations considered unnecessary %J Acta Informatica %V 8 %P 221-242 %D 1977
%A J. Donohue %T On the semantics of ‘data type’ %J SIAM J. of Computing %D 1979 %V 8 %P 546-560

%A V. Donzeau-Gouge %T On the formal description of Ada %B LNCS 94: Semantics-Directed Compiler Gen-
eration %l Springer %C Berlin %D 1980 %E N.D. Jones

%A V. Donzeau-Gouge %T Denotational definition of properties of program computations %B Program Flow
Analysis: Theory and Applications %E S.S. Muchnick and N. D. Jones %l Prentice-Hall %C Englewood Cliffs,
N.J. %D 1982 %P 343-379

%A P. Dybjer %T Using domain algebras to prove the correctness of a compiler %B LNCS 182: Proc. 2nd Symp.
on Theoretical Aspects of Comp. Sci. %l Springer %C Berlin %D 1985 %P 98-108

%A H. Enderton %T A Mathematical Introduction to Logic %I Academic Press %D 1974 %C New York
%A H. Enderton %T Elements of Set Theory %Il Academic Press %C New York %D 1977

%A E. P. Ershov %T On the essence of compilation %B Formal Description of Programming Concepts %E E.J.
Neuhold %I North-Holland %C Amsterdam %D 1978

%A E. P. Ershov %T Mixed computation: potential applications and problems for study %J Theoretical Computer
Science %V 18 %D 1982 %P 41-68

%A J. Fairbairn %T PONDER and its type system %R Tech. rpt. 31 %l Computer Laboratory, University of Cam-
bridge %D 1982

%A R. E. Filman %A D. E. Friedman %T Coordinated Computing %Il McGraw-Hill %C New York %D 1984

%A D. Friedman %A D. S. Wise %T CONS should not evaluate its arguments %B Proc. 3rd ICALP %C Edin-
burgh %E S. Michaelson and R. Milner %P 257-284 %D 1976

%Q Friedman, D., M. Wand, C. Haynes, E. Kohlbecker, and W. Clinger %T Programming Languages: A
Hitchhiker's Guide to the Meta-Universe %R Course notes, Computer Science Dept. %l Indiana Univ. %D 1984

%A H. Ganzinger %A K. Ripken %A R. Wilhelm %T Automatic generation of optimizing multipass compilers
%B Proc. IFIP Congress 77 %l North-Holland %C Amsterdam %D 1977 %P 535-540

%A H. Ganzinger %T Transforming denotational semantics into practical attribute grammars %B LNCS 94:
Semantics-Directed Compiler Generation %E N.D. Jones %I Springer %C Berlin %D 1980 %P 1-69

%A H. Ganzinger %T Denotational semantics for languages with modules %B Formal Description of Program-
ming Concepts Il %E D. Bjérner %l North-Holland %C Amsterdam %D 1983 %P 3-23

%A H. Ganzinger %A R. Giegerich %A U. Moncke %A R. Wilhelm %T A truly generative semantics-directed
compiler generator %B Proc. ACM SIGPLAN 82 Symp. on Compiler Construction %C Boston %D 1982 %P
172-184 %J ACM SIGPLAN Notices 17-6

%A M.-C. Gaudel %T Specification of compilers as abstract data type representations %B LNCS 94: Semantics-
directed compiler generation %l Springer %C Berlin %D 1980 %P 140-164

%A M.-C. Gaudel %T Compiler definitions from formal definitions of programming languages: a survey %B
LNCS 107: Formalization of Programming Concepts %l Springer %C Berlin %D 1981 %P 96-114

282 Bibliograpy

%A M. Georgeff %T Transformations and reduction strategies for typed lambda expressions %J ACM Trans. on
Prog. Lang. and Sys. %V 6 %D 1984 %P 603-631

%A Gierz, G. %A K. H. Hoffmann %A K. Keimel %A J. D. Lawson %A M. Mislove %A D. S. Scott %T A Com-
pendium of Continuous Lattices %l Springer %C Berlin %D 1980

%A H. Glaser %A C. Hankin %A D. Till %T Principles of Functional Programming %l Prentice-Hall %C Engle-
wood Cliffs, N.J. %D 1985

%A J. A. Goguen %T Some design principles and theory for OBJ-0 %B LNCS 75: Mathematical Studies of Infor-
mation Processing %E E. Blum, M. Paul, and S. Takasu %I Springer %C Berlin %D 1979 %P 425-471

%A J. A. Goguen %A K. Parsaye-Ghomi %T Algebraic denotational semantics using parameterized abstract
modules %B LNCS 107: Formalization of Programming Concepts %E J. Diaz %E |I. Ramos %I Springer %C Ber-
lin %D 1981 %P 292-309

%A Goguen, G. %A J. W. Thatcher %A E. G. Wagner %A J. B. Wright %T Initial algebra semantics and continu-
ous algebras %J Journal of the ACM %V 24 %D 1977 %P 68-95

%A M. J. C. Gordon %T Models of Pure LISP %R Experimental Programming Reports 31 %l Machine Intelli-
gence Dept., Edinburgh Univ. %C Scotland %D 1973

%A M. J. C. Gordon %T Towards a semantic theory of dynamic binding %R STAN-CS-75-507 %l Computer Sci-
ence Dept., Stanford Univ. %D 1975

%A M. J. C. Gordon %B Proc. Int. Symp. on Proving and Improving Programs %C Arc-et-Senans, France %T
Operational reasoning and denotational semantics %D 1978 %P 83-98

%A M. J. C. Gordon %T The Denotational Description of Programming Languages %l Springer %C Berlin %D
1979

%A M. J. C. Gordon %A R. Milner %A C. Wadsworth %T LNCS 78: Edinburgh LCF %I Springer %C Berlin %D
1979

%A G. Gratzer %T Universal Algebra, 2nd Edition %l Springer %C Berlin %D 1979

%A 1. Grief %A A. Meyer %T Specifying the semantics of while-programs: a tutorial and critique of a paper by
Hoare and Lauer %J ACM Trans. of Prog. Lang. and Sys. %V 3 %D 1981 %P 484-507

%A 1. Guessarian %T LNCS 99: Algebraic Semantics %l Springer %C Berlin %D 1981

%A C. Gunter %T Profinite domains for recursive domain equations %R Tech. rpt. CMU-CS-85-107 %l Computer
Science Dept., Carnegie-Mellon Univ. %C Pittsburgh %D 1985a

%A C. Gunter %T Comparing categories of domains %B LNCS: Proc. Workshop on Mathematical Foundations of
Programming Semantics %! Springer %C Berlin %D 1985b

%A C. Gunter %T A universal domain technique for profinite posets %B LNCS 194: Proc. 12th ICALP %l
Springer %C Berlin %D 1985c %P 232-243

%A P. Halmos %T Naive Set Theory %l Van Nostrand %C Princeton %D 1960
y

%A J. Halpern %A J. Williams %A E. Wimmers %A T. Winkler %T Denotational semantics and rewrite rules for
FP %B Proc. 12th ACM Symp. on Princ. of Prog. Lang. %C New Orleans %D 1986 %P 108-120

Bibliograpy 283

%A P. Henderson %T Functional Programming %l Prentice-Hall %C Englewood Cliffs, N.J. %D 1980
g g

%A P. Henderson %A L. Morris %T A lazy evaluator %B 3rd ACM Symp. on Prin. of Prog. Lang. %D 1976 %P
95-103

%A W. Henhapl %A C. Jones %T ALGOL 60 %B Formal Specification and Software Development %E D.
Bjdrner and C. Jones %l Prentice-Hall %C Englewood Cliffs, N.J. %D 1982 %P 141-174

%A M. Hennessy %A G. D. Plotkin %T Full abstraction for a simple parallel programming language %B LNCS
74: Proc. Math. Foundations of Comp. Sci. %l Springer %C Berlin %D 1979

%A M. C. Henson %A R. Turner %T Completion semantics and interpreter generation %B Proc. 9th ACM Symp.
on Prin. of Prog. Lang. %C Albuquerque, N.M. %D 1982 %P 242-254

%A H. Herrlich %A G. E. Strecker %T Category Theory %l Allyn and Bacon %C Boston %D 1973

%A C. Hewitt %A H. Baker %T Actors and continuous functionals %B Formal Description of Programming Con-
cepts %E E. J. Neuhold %Il North-Holland %C Amsterdam %D 1978 %P 367-390

%A C. A. R. Hoare %T An axiomatic basis for computer programming %J Comm. of the ACM %V 12 %D 1969
%P 576-580

%A C. A. R. Hoare %T Proof of correctness of data representations %J Acta Informatica %V 1 %D 1972 %P
271-281

%A C. A. R. Hoare %T Recursive data structures %J Int. J. of Computer and Info. Sciences %V 4 %D 1975 %P
105-132

%A C. A. R. Hoare %A P. E. Lauer %T Consistent and complementary formal theories of the semantics of pro-
gramming languages %J Acta Informatica %V 3 %D 1974 %P 135-153

%A C. A. R. Hoare %A N. Wirth %T An axiomatic definition of the programming language Pascal %J Acta Infor-
matica %D 1973 %V 2 %P 335-355

%A C. M. Hoffman %A M. J. O'Donnell %T Programming with equations %J ACM Trans. Prog. Lang. and Sys-
tems %V 4 %D 1983 %P 83-112

%A J. Hopcroft %A J. Ullman %T Introduction to Automata Theory, Languages, and Computation %I Addison-
Wesley %C Reading, Mass. %D 1979

%A P. Hudak %A D. Krantz %T A combinator-based compiler for a functional language %B Proc. 11th ACM
Symp. on Prin. of Prog. Lang. %C Salt Lake City, Utah %D 1984 %P 122-132

%A G. Huet %A D. C. Oppen %T Equations and rewrite rules: a survey %B Formal Language Theory %E R.
Book %l Academic Press %C New York %D 1980

%A R. J. Hughes %T Super combinators: a new implementation method for applicative languages %B Proc. ACM
Symp. on LISP and Functional Programming %D 1982 %P 1-10

%A K. Jensen %T Connection between Dijkstra’s predicate transformers and denotational continuation semantics
%R Report DAIMI PB-86 %D 1978 %Il Computer Science Dept., Aarhus Univ. %C Denmark

%A T. Johnsson %T Efficient compilation of lazy evaluation %B Proc. ACM SIGPLAN 84 Conference on Com-
piler Construction %J ACM SIGPLAN Notices %V 19-6 %D 1984 %P 58-69

284 Bibliograpy

%A J. B. Johnston %T The contour model of block structured processes %J ACM SIGPLAN Notices %V 6 %D
1971 %P 55-82

%A C. Jones %T Modelling concepts of programming languages %B Formal Specification and Software Develop-
ment %E D. Bjérner and C. Jones %l Prentice-Hall %C Englewood Cliffs, N.J. %D 1982a %P 85-124

%A C. Jones %T More on exception mechanisms %B Formal Specification and Software Development %l
Prentice-Hall %C Englewood Cliffs, N.J. %D 1982b %P 125-140 %E D. Bjdrner and C. Jones

%Q Jones, N. D., ed. %T LNCS 94: Semantics-Directed Compiler Generation %l Springer %C Berlin %D 1980a

%A N. D. Jones %T Flow analysis of lambda expressions %B LNCS 85: Proc. 7th ICALP %l Springer %D 1980b
%C Berlin

%A N. D. Jones %A S. S. Muchnick %T LNCS 66: TEMPO: A Unified Treatment of Binding Time and Parameter
Passing Concepts in Programming Languages %l Springer %C Berlin %D 1978

%A N. D. Jones %A S. S. Muchnick %T A fixed-program machine for combinator expression evaluation %B Proc.
ACM Conf. on LISP and Functional Programming %D 1982

%A N. D. Jones %A D. A. Schmidt %T Compiler generation from denotational semantics %B LNCS 94:
Semantics-Directed Compiler Generation %l Springer %C Berlin %D 1980 %P 70-93

%A N. D. Jones %A P. Sestoft %A H. Sondergaard %T An experiment in partial evaluation: the generation of a
compiler generator %J ACM SIGPLAN Notices %V 20-8 %D 1985 %P 82-87

%A G. Kahn %A D. B. MacQueen %A G. D. Plotkin, eds. %T LNCS 173: Semantics of Data Types %l Springer
%C Berlin %D 1984

%A T. Kamimura %A A. Tang %T Algebraic relations and presentations %J Theoretical Comp. Science %V 27
%D 1983 %P 39-60

%A T. Kamimura %A A. Tang %T Effectively given spaces %J Theoretical Comp. Science %V 29 %D 1984a %P
155-166

%A T. Kamimura %A A. Tang %T Total objects of domains %J Theoretical Comp. Science %D 1984b
%A A. Kanda %T Data types as initial algebras %B 19th Symp. on Foundations of Comp. Science %D 1978

%A A. Kanda %T Effective solutions of recursive domain equations %R Ph.D. thesis %l University of Warwick
%D 1979

%A K. Karlsson %A K. Petersson %T Notes from the Aspenas symposium on functional languages and computer
architectures %J ACM SIGPLAN Notices %V 17-11 %D 1982 %P 14-23

%A V. Kini %A D. Martin %A A. Stoughton %T Testing the INRIA Ada formal definition: the USC-ISI formal
semantics project %B Proc. ADATec Meeting %D 1982

%A S. C. Kleene %T Introduction to Metamathematics %l Van Nostrand %C Princeton, N.J. %D 1952

%A D. Knuth %T The semantics of context free languages %J Math. Systems Theory %V 2 %D 1968 %P 127-145
%0 (Corrigenda, vol. 5, p. 95, 1971)

%A J. Lambek %T From lambda-calculus to cartesian closed categories %B To H.B. Curry: Essays on Combina-
tory Logic, Lambda Calculus and Formalism %E J. P. Seldin and J. R. Hindley %Il Academic Press %C New York

Bibliograpy 285

%D 1980 %P 375-402
%A P. Landin %T The mechanical evaluation of expressions %J Computer Journal %V 6 %D 1964 %P 308-320

%A P. Landin %T A correspondence between ALGOL60 and Church’s lambda notation %J Comm. of the ACM
%V 8 %D 1965 %P 89-101, 158-165

%A P. Landin %A R. Burstall %T Programs and their proofs: an algebraic approach %B Machine Intelligence 4
%E D. Michie %! Edinburgh Univ. Press %D 1969 %P 17-44

%A H. Ledgard %T Ten mini-languages: a study of topical issues in programming languages %J ACM Computing
Surveys %V 3 %D 1971 %P 115-146

%A J. A. N. Lee %T Computer Semantics %I Van Nostrand-Reinhold %C New York %D 1972

%A D. J. Lehmann %A M. B. Smyth %T Algebraic specification of data types: a synthetic approach %J Math.
Systems Theory %V 14 %P 97-139 %D 1981

%A E. J. Lemmon %T Beginning Logic %Il Thomas Nelson and Sons, Pub. %C London %D 1965

%A E. J. Lemmon %T Introduction to Axiomatic Set Theory %l Routledge and Kegan Paul, Ltd. %C London %D
1968

%A J.-J. Levy %T An algebraic interpretation of the lambda-beta-kappa-calculus and an application of a labelled
lambda calculus %J Theoretical Computer Science %V 2 %D 1976 %P 97-114

%A G. T. Ligler %T A mathematical approach to language design %B Proc. 2nd ACM Symp. on Prin. of Prog.
Lang. %C Palo Alto, Cal. %D 1975

%A G. T. Ligler %T Surface properties of programming language constructs %J Theoretical Comp. Science %V 2
%D 1976

%A P. Lucas %T Main approaches to formal semantics %B Formal Specification and Software Development %E
D. Bjdrner and C. Jones %l Prentice-Hall %C Englewood Cliffs, N.J. %D 1982 %P 3-24

%A P. Lucas %A K. Walk %T On the formal definition of PL/1 %J Annual Review in Automatic Programming %l
Pergammon Press %C London %D 1963 %V 6 %P 105-152

%A J. McCarthy %T Towards a mathematical science of computation %B Proc. IFIP Congress 63 %l North-
Holland %D 1963 %C Amsterdam %P 21-28

%A J. McCarthy %A J. Painter %T The correctness of a compiler for arithmetic expressions %B Mathematical
Aspects of Computer Science, Proc. Symp. Applied Math. 19 %l American Math. Society %D 1967 %P 33-41

%A N. McCracken %T The typechecking of programs with implicit type structure %B LNCS 173: Semantics of
Data Types %l Springer %C Berlin %D 1984 %P 301-316

%A J. R. McGraw %T The Val language: description and analysis %J ACM Trans. on Prog. Lang. and Systems
%V 4 %D 1982 %P 44-82

%A D. B. MacQueen %A R. Sethi %T A semantic model of types for applicative languages %B Proc. ACM Conf.
on LISP and Functional Programming %D 1982 %C Pittsburgh %P 243-252

%A D. B. MacQueen %A G. Plotkin %A R. Sethi %T An ideal model for recursive polymorphic types %B Proc.
11th ACM Symp. on Princ. of Prog. Lang. %C Salt Lake City, Utah %D 1984 %P 165-174

286 Bibliograpy

%A M. Main %A D. Benson %T Functional behavior of nondeterministic and concurrent programs %J Informa-
tion and Control %D 1984 %V 62 %P 144-189

%Q Manes, E. G., ed. %T LNCS 25: Category Theory Applied to Computation and Control %l Springer %C Ber-
lin %D 1975

%A Z. Manna %T Mathematical Theory of Computation %l McGraw-Hill %C New York %D 1974

%A Z. Manna %A J. Vuillemin %T Fixpoint approach to the theory of computation %J Comm. of the ACM %D
1972 %V 15 %P 528-536

%A Z. Manna %A S. Ness %A J. Vuillemin %T Inductive methods for proving properties of programs %J ACM
SIGPLAN Notices %V 7-1 %D 1972 %P 27-50

%A Z. Manna %A R. Waldinger %T The Logical Basis for Computer Programming, Vol. 1 %l Addison Wesley
%C Reading, Mass. %D 1985

%A M. Marcotty %A H. F. Ledgaard %A G. V. Bochmann %T A sampler of formal definitions %J ACM Comput-
ing Surveys %V 8 %P 191-276 %D 1976

%A G. Markowski %T A motivation and generalization of Scott’s notion of a continuous lattice %B LNM 871.:
Continuous Lattices %l Springer %C Berlin %D 1981 %P 298-307

%A G. Markowski %A B. K. Rosen %T Bases for chain-complete posets %J IBM J. or Research and Development
%V 20 %D 1976 %P 138-147

%A M. Mauny %A P. L. Curien %A G. Cousineau %T The categorical abstract machine %B Proc. IFIP Conf. on
Functional Programming Languages and Computer Architecture %C Nancy, France %D Sept. 1985

%A B. H. Mayoh %T Attribute grammars and mathematical semantics %J SIAM Journal of Computing %V 10
%D 1981 %P 503-518

%A A. C. Melton %A D. A. Schmidt %T A topological framework for cpos lacking bottom elements %B LNCS:
Mathematical Foundations of Programming Semantics %l Springer %C Berlin %D 1986

%A A. Mazurkiewicz %T Proving algorithms by tail functions %J Information and Control %V 18 %D 1970 %P
220-226

%A A. R. Meyer %T What is a model of the lambda calculus? %J Information and Control %V 52 %D 1982 %P
87-122

%A A. R. Meyer %T Understanding ALGOL: a view of a recent convert to denotational semantics %B Proc. IFIP
Congress 1983 %l North-Holland %C Amsterdam %D 1983 %P 951-962

%A A. Meyer %A M. Wand %T Continuation semantics in the typed lambda-calculus %B LNCS 193: Proc. Log-
ics of Programs %l Springer %C Berlin %D 1985 %P 219-224

%A R. Milne %T Transforming predicate transformers %B Formal Description of Programming Concepts %E E.J.
Neuhold %I North-Holland %C Amsterdam %D 1978

%A R. Milne %A C. Strachey %T A Theory of Programming Language Semantics %l Chapman and Hall %C
London %D 1976

%A R. Milner %T Models of LCF %B Mathematical Centre Tracts 82: Foundations of Computer Science I, part 2
%D 1976a %P 49-63 %E J. de Bakker %E K. Apt %I Mathematisch Centrum %C Amsterdam

Bibliograpy 287

%A R. Milner %T Program semantics and mechanized proof %B Mathematical Centre Tracts 82: Foundations of
Computer Science I, part 2 %D 1976b %P 3-44 %E J. de Bakker %E K. Apt %l Mathematisch Centrum %C
Amsterdam

%A R. Milner %T Fully abstract models of typed lambda-calculi %J Theoretical Computer Science %V 4 %D
1977 %P 1-22

%A R. Milner %T A theory of type polymorphism in programming %J J. of Computer and System Sciences %V
17 %D 1978 %P 348-375

%A R. Milner %T LNCS 92: A Calculus of Communicating Systems %l Springer %C Berlin %D 1980

%A R. Milner %T Calculi for synchrony and asynchrony %J Theoretical Comp. Sci. %V 25 %D 1983 %P
267-310

%A R. Milner %T Lectures on a Calculus for Communicating Systems %B LNCS 197: Seminar on Concurrency
%I Springer %C Berlin %D 1985 %P 197-220

%A D. Milos %A U. Pleban %A G. Loegel %T Direct implementation of compiler specifications or the Pascal P-
code compiler revisited %B Proc. 11th ACM Symp. on Princ. of Prog. Lang. %C Salt Lake City, Utah %D 1984
%P 196-207

%A J. Mitchell %T Coercion and type inference %B Proc. 11th ACM Symp. on Pric. of Prog. Lang. %C Salt Lake
City, Utah %D 1984 %P 175-185

%A F. L. Morris %T Advice on structuring compilers and proving them correct %B Proc. 1st ACM Symp. on Prin.
of Prog. Lang. %C Boston %D 1973 %P 144-152

%A J. H. Morris %T Lambda-calculus models of programming languages %R Ph.D. thesis, Project MAC report
TR-57 %I MIT %C Cambridge, Mass. %D 1968

%A J. H. Morris %A B. Wegbreit %T Subgoal induction %J Comm. of the ACM %V 20 %P 209-222 %D 1977

%A P. D. Mosses %T The mathematical semantics of Algol60 %R Tech. monograph PRG12 %l Programming
Research Group, Oxford Univ., Oxford %D 1974

%A P. D. Mosses %T Mathematical semantics and compiler generation %R Ph.D. Thesis, Oxford University %D
1975

%A P. D. Mosses %T Compiler generation using denotational semantics %B LNCS 45: Proc. Math. Foundations
of Comp. Science %I Springer %C Berlin %D 1976 %P 436-441

%A P. D. Mosses %T Making denotational semantics less concrete %B Workshop on semantics of programming
languages %C Bad Honnef, Germany %D 1977 %0 Univ. of Dortmund, FRG, tech. rpt. 41.

%A P. D. Mosses %T Modular denotational semantics %R draft 1979-3-17, Computer science dept., Aarhus Univ.
%C Aarhus, Denmark %D 1979a

%A P. D. Mosses %T SIS— semantics implementation system: reference manual and user guide %R Report
DAIMI MD-30 %Il Computer Science Dept., Aarhus University %D 1979b

%A P. D. Mosses %T SIS— semantics implementation system: tested examples %R Report DAIMI MD-33 %l
Computer Science Dept., Aarhus University %D 1979¢

%A P. D. Mosses %T A constructive approach to compiler correctness %B LNCS 85: 7th ICALP %D 1980 %l

288 Bibliograpy

Springer %C Berlin

%A P. D. Mosses %T Abstract semantic algebras! %B Formal Description of Programming Concepts Il %P 45-72
%E D. Bjdrner %l North-Holland %C Amsterdam %D 1983a

%A P. D. Mosses %T A short course on denotational semantics %R Course notes, Facultad de Informatica,
Universidad del Pais Vasco %C San Sebastian, Spain %D 1983b

%A P. D. Mosses %T A basic abstract semantic algebra %B LNCS 173: Semantics of data types %l Springer %D
1984 %C Berlin %P 87-108

%A S. S. Muchnick %A U. Pleban %T A semantic comparison of LISP and Scheme %B Proc. ACM Conf. on
LISP and Functional Programming %D 1982 %P 56-64

%A K. Mulmuley %T Full abstraction and semantic equivalence %R Ph.D. thesis %l Computer Science Dept.,
Carnegie-Mellon University, Pittsburgh, PA %D 1985

%A A. Mycroft %T Abstract interpretation and optimizing transformations for applicative programs %R Ph.D.
thesis %Il Computer Science Dept., University of Edinburgh, Scotland %D 1981

%Q Naur, P., et. al. %T Revised report on the algorithmic language ALGOL60 %J Comm. of the ACM %V 6 %P
1-17 %D 1963

%A Nielsen, M. %A G. D. Plotkin %A G. Winskel %T Petri nets, event structures, and domains %J Theoretical
Comp. Science %V 13 %D 1981 %P 85-108

%A Nielson, F. %T Compiler writing using denotational semantics %R Report DAIMI TR-10 %I Computer sci-
ence dept., Aarhus Univ. %C Denmark %D 1979

%A Nielson, F. %T A denotational framework for data flow analysis %J Acta Informatica %V 18 %D 1983 %P
265-288

%A F. Nielson %T Program transformations in a denotational setting %J ACM Trans. on Prog. Lang. and Sys.
%V 7 %D 1985 %P 359-379

%A M. Nivat %T On the interpretation of recursive polyadic program schemes %J Symp. Mathematica %V 15
%D 1975 %P 255-281

%A B. Nordstrom %A K. Petersson %T Types and specifications %B Proc. IFIP Congress 83 %l North-Holland
%C Amsterdam %D 1983 %P 915-920

%A F. Oles %T Type algebras, functor categories, and block structure %B Algebraic Methods in Semantics %E
M. Nivat and J. Reynolds %I Cambridge Univ. Press %C Cambridge %D in press

%A A. Ollengren %T Definition of Programming Languages by Interpreting Automata %I Academic Press %D
1974 %C New York

%A F. G. Pagan %T Semantics of Programming Languages: A Panoramic Primer %l Prentice-Hall %C Englewood
Cliffs, N.J. %D 1981

%A L. Paulson %T A semantics-directed compiler generator %B Proc. 9th ACM Symp. on Prin. of Prog. Lang.
%D 1982 %P 224-233

%A L. Paulson %T Compiler generation from denotational semantics %B Methods and Tools for Compiler Con-
struction %E B. Lorho %P Cambridge Univ. Press %D 1984 %P 219-250

Bibliograpy 289

%A D. Park %T Fixpoint induction and proofs of program properties %B Machine Intelligence %V 5 %D 1969
%P 59-78 %E Meltzer %E D. Michie %l Edinburgh Univ. Press %C Edinburgh

%A D. Park %T A predicate transformer for weak fair iteration %B Proc., 6th IBM Symp. on Math. Foundations
of Computer Science %C Hakene, Japan %D 1981

%A U. Pleban %T Compiler prototyping using formal semantics %B Proc. SIGPLAM 84 Symp. on Compiler Con-
struction %C Montreal %D June, 1984 %P 94-105 %J SIGPLAN Notices 19-6

%A G. D. Plotkin %T Call-by-name, call-by-value and the lambda calculus %J Theoretical Computer Science %V
1 %D 1975 %P 125-159

%A G. D. Plotkin %T A powerdomain construction %J SIAM J. of Computing %V 5 %D 1976 %P 452-487

%A G. D. Plotkin %T LCF considered as a programming language %J Theoretical Comp. Science %V 5 %D 1977
%P 223-255

%A G. D. Plotkin %T A structural approach to operational semantics %R Report DAIMI FN-19 %Il Computer Sci-
ence Dept., Aarhus Univ. %D 1981

%A G. D. Plotkin %T Dijkstra’s predicate transformers and Smyth’s powerdomains %B LNCS 86: Abstract
Software Specifications %l Springer %C Berlin %D 1982a %P 527-553

%A G. D. Plotkin %T A powerdomain for countable nondeterminism %B LNCS 140: Proc. 9th ICALP %l
Springer %D 1982b %P 412-428

%A G. D. Plotkin %T The category of complete partial orders: a tool for making meanings %R Postgraduate lec-
ture notes, Computer Science Dept., Univ. of Edinburgh %C Edinburgh %D 1982c

%A W. Polak %T Program verification based on denotational semantics %B Proc. 8th ACM Symp. on Prin. of
Prog. Lang. %D 1981a

%A W. Polak %T LNCS 124: Compiler Specification and Verification %l Springer %C Berlin %D 1981b

%A M. R. Raskovsky %T A correspondence between denotational semantics and code generation %R Ph.D. thesis
%I Univ. of Essex %D 1982a

%A M. R. Raskovsky %T Denotational semantics as a specification of code generators %B Proc. ACM SIGPLAN
82 Symp. on Compiler Construction %C Boston %D 1982b %P 230-244 %J ACM SIGPLAN Notices 17-6

%A M. R. Raskovsky %A P. Collier %T From standard to implementation denotational semantics %B LNCS 94:
Semantics-Directed Compiler Generation %E N.D. Jones %Il Springer %C Berlin %D 1980 %P 94-139

%A J.-C. Raoult %A R. Sethi %T Properties of a notation for combining functions %B LNCS 140: Proc. 9th
ICALP %l Springer %C Berlin %D 1982 %P 429-441

%A J.-C. Raoult %A R. Sethi %T The global storage needs of a subcomputation %B Proc. ACM Symp. on Prin. of
Prog. Lang. %C Salt Lake City, Utah %D 1984 %P 148-157

%A J. C. Reynolds %T GEDANKEN— a simple typeless language based on the principle of completeness and the
reference concept %J Comm. of the ACM %V 13 %D 1970 %P 308-319

%A J. C. Reynolds %T Definitional interpreters for higher order programming languages %B Proc. ACM Annual
Conf. %D 1972a %P 717-740

290 Bibliograpy

%A J. C. Reynolds %T Notes on a lattice-theoretic approach to the theory of computation %R Report, Systems and
Info. Sciences Dept., Syracuse Univ. %C Syracuse, N.Y. %D 1972b

%A J. C. Reynolds %T Towards a theory of type structure %B LNCS 19: Proc. Paris Programming Symp. %l
Springer %C Berlin %D 1974a %P 408-425

%A J. C. Reynolds %T On the relation between direct and continuation semantics %B LNCS 14: Proc. 2nd ICALP
%I Springer %C Berlin %D 1974b %P 157-168

%A J. C. Reynolds %T Semantics of the domain of flow diagrams %J J. of the ACM %V 24 %D 1977 %P
484-503

%A J. C. Reynolds %T The essence of Algol %B Int. Symp. on Algorithmic Languages %E J. de Bakker %E van
Vliet %I North-Holland %C Amsterdam %D 1981 %P 345-372

%A J. C. Reynolds %T Types, abstraction, and parametric polymorphism %B Proc. IFIP Congress %E R.E.A.
Mason %I North-Holland %C Amsterdam %D 1983 %P 513-524

%A J. C. Reynolds %T Three approaches to type structure %B LNCS 185: Mathematical Foundations of Software
Development %l Springer %C Berlin %D 1985 %P 97-138

%A H. Richards %T An applicative programming bibliography %R Report %I Burroughs Corp., Austin Research
Center %C Austin, Texas %D 1985

%A H. R. Rogers %T Theory of Recursive Functions and Effective Computability %I McGraw-Hill %C New
York %D 1967

%A V. Royer %T Deriving stack semantics congruent to standard denotational semantics %B LNCS 182: Proc.
2nd Symp. on Theoretical Aspects of Comp. Sci. %l Springer %C Berlin %D 1985 %P 299-309

%A R. Rustin, ed. %T Formal Semantics of Programming Languages %l Prentice-Hall %C Englewood Cliffs, N.J.
%D 1972

%A L. E. Sanchis %T Data types as lattices: retractions, closures, and projections %J RAIRO Informatique
theorique %V 11 %D 1977 %P 329-344

%A D. A. Schmidt %T State transition machines for lambda-calculus expressions %B LNCS 94: Semantics-
Directed Compiler Generation %l Springer %C Berlin %D 1980 %P 415-440

%A D. A. Schmidt %T Detecting global variables in denotational specifications %J ACM Trans. on Prog. Lang.
and Sys. %V 7 %D 1985a %P 299-310

%A D. A. Schmidt %T An implementation from a direct semantics definition %B LNCS: Proc. Workshop on Pro-
grams as Data Objects %l Springer %C Berlin %D 1985b

%A D. S. Scott %T The lattice of flow diagrams %B LNM 188: Semantics of Algorithmic Languages %E E.
Engeler %l Springer %C Berlin %P 311-366 %D 1970

%A D. S. Scott %T Outline of a mathematical theory of computation %R Tech. monograph PRG-2 %I Program-
ming Research Group, Univ. of Oxford %D 1971

%A D. S. Scott %T Continuous lattices %B LNM 274: Proc. Dahlhousie Conf. %l Springer %C Berlin %P
97-136 %D 1972

%A D. S. Scott %T Data types as lattices %J SIAM J. of Computing %V 5 %D 1976 %P 522-587

Bibliograpy 291

%A D. S. Scott %T Lectures on a mathematical theory of computation %R Report PRG-19, Programming
Research Group, Univ. of Oxford %D 1980a

%T Relating theories of the lambda calculus %A D. S. Scott %B To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism %E J. P. Seldin %E J. R. Hindley %I Academic Press %C New York %D 1980b
%P 403-450

%A D. S. Scott %T Domains for denotational semantics %B LNCS 140: Proc. 9th ICALP %l Springer %C Berlin
%D 1982a %P 577-613

%A D. S. Scott %T Some ordered sets in computer science %B Ordered Sets %E I. Rival %l D. Reidel Pub. %D
1982b %P 677-718

%A D. S. Scott %A C. Strachey %T Towards a mathematical semantics for computer languages %R Tech. mono-
graph PRG-6 %I Programming Research Group, Univ. of Oxford %D 1971

%A R. Sethi %T Control flow aspects of semantics-directed compiling %J ACM Trans. on Prog. Lang. and Sys-
tems %V 5 %D 1983 %P 554-596

%A R. Sethi %T Circular expressions: elimination of static environments %B LNCS 115: Proc. 8th ICALP %l
Springer %D 1981 %C Berlin %P 378-392

%A R. Sethi %A A. Tang %T Transforming direct into continuation semantics for a simple imperative language
%D 1978 %R Unpublished manuscript

%A R. Sethi %A A. Tang %T Constructing call-by-value continuation semantics %J J. of the ACM %V 27 %D
1980 %P 580-597

%A M. B. Smyth %T Effectively given domains %J Theoretical Comp. Science %V 5 %D 1977 %P 257-274
%A M. B. Smyth %T Powerdomains %D 1978 %P 23-36 %J J. of Computer and System Sciences

%A M. B. Smyth %T Power domains and predicate transformers: a topological view %B LNCS 154: Proc. 10th
ICALP %l Springer %C Berlin %D 1982 %P 662-675

%A M. B. Smyth %T The largest cartesian closed category of domains %J Theoretical Computer Science %V 27
%D 1983 %P 109-120

%A M. B. Smyth %A G. D. Plotkin %T The category-theoretic solution of recursive domain equations %J SIAM
J. of Computing %V 11 %D 1982 %P 761-783

%A G. L. Steele %T Debunking the ‘expensive procedure call’ myth %B Proc. ACM Annual Conf. %D 1977 %P
153-162

%A G. L. Steele %A G. J. Sussman %T LAMBDA: the ultimate imperative %R Al memo 353 %l Al Lab., MIT
%D 1976a

%A G. L. Steele %A G. J. Sussman %T LAMBDA: the ultimate declarative %R Al Memo 379 %Il Al Lab., MIT
%D 1976b

%A G. L. Steele %A G. J. Sussman %T The revised report on SCHEME %R Al Memo 452 %l MIT %C Cam-
bridge, Mass. %D 1978

%A A. Stoughton %R Ph.D. thesis %I Computer Science Dept., University of Edinburgh %C Edinburgh, Scotland
%D 1986

292 Bibliograpy

%A J. E. Stoy %T Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory %l
MIT Press %C Cambridge, Mass. %D 1977

%A J. E. Stoy %T The congruence of two programming language definitions %J Theoretical Comp. Science %V
13 %D 1981 %P 151-174

%A J. E. Stoy %T Some mathematical aspects of functional programming %B Functional Programming and its
Applications %E J. Darlington, et. al. %I Cambridge Univ. Press %C Cambridge %D 1982 %P 217-252

%A C. Strachey %T Towards a formal semantics %B Formal Language Description Languages %! North-Holland
%C Amsterdam %D 1966 %P 198-220 %E T.B. Steele

%A C. Strachey %T Fundamental concepts in programming languages %R Unpublished manuscript %l Program-
ming Research Group, Univ. of Oxford %D 1968

%A C. Strachey %T The varieties of programming language %R Tech. monograph PRG-10 %l Programming
Research Group, Univ. of Oxford %D 1973

%A C. Strachey %A C. P. Wadsworth %T Continuations: a mathematical semantics for handling full jumps %R
Tech. monograph PRG-11 %l Programming Research Group, Univ. of Oxford %D 1974

%A R. D. Tennent %T Mathematical semantics of SNOBOL4 %B Proc. 1st ACM Symp. on Prin. of Prog. Lang.
%C Boston %D 1973 %P 95-107

%A R. D. Tennent %T The denotational semantics of programming languages %J Comm. of the ACM %D 1976
%V 19 %P 437-452

%A R. D. Tennent %T A denotational definition of the programming language Pascal %R Tech. report 77-47 %l
Department of Computing and Information Sciences, Queen’s Univ. %C Kingston, Ontario %D 1977a

%A R. D. Tennent %T Language design methods based on semantic principles %J Acta Informatica %V 8 %D
1977b %P 97-112

%A R. D. Tennent %T On a new approach to representation-independent data classes %J Acta Informatica %V 8
%D 1977¢ %P 315-324

%A R. D. Tennent %T Principles of Programming Languages %I Prentice-Hall %C Englewood Cliffs, N.J. %D
1981

%A R. D. Tennent %T Semantics of inference control %B LNCS 140: Proc. 9th ICALP %l Springer %C Berlin
%D 1982 %P 532-545

%A J. Thatcher %A E. Wagner %A J. Wright %T More on advice on structuring compilers and proving them
correct %B LNCS 71: Proc. 6th ICALP %l Springer %C Berlin %D 1979 %P 596-615

%A D. Turner %T A new implementation technique for applicative languages %J Software Practice and Experi-
ence %V 9 %P 31-49 %D 1979

%A S. R. Vegdahl %T A survey of proposed architectures for the execution of functional languages %J IEEE
Trans. on Computers %V c-33 %D 1984

%A T. Vickers %T Quokka: a translator generator using denotational semantics %R Report %l Computer Science
Dept., University of New South Wales %C Kensington, Australia %D 1985

%A J. Vuillemin %T Correct and optimal implementations of recursion in a simple programming language %J J.

Bibliograpy 293

of Computer and System Sciences %D 1974 %V 9 %P 1050-1071

%A C. P. Wadsworth %T The relation between computational and denotational properties for Sgottied2ls
of the lambda-calculus %J SIAM J. of Computing %V 5 %D 1976 %P 488-521

%A C. P. Wadsworth %T Approximate reductions and lambda calculus models %J SIAM J. of Computing %V 7
%D 1978 %P 337-356

%A C. P. Wadsworth %R Postgraduate lecture notes on domain theory %l Computer science dept., Univ. of Edin-
burgh %D 1978

%A M. Wand %T Fixed point constructions in order-enriched categories %J Theoretical Computer Science %V 8
%D 1979 %P 13-30

%A M. Wand %T Continuation-based program transformation strategies %J J. of the ACM %D 1980a %V 27 %P
164-180

%A M. Wand %T Induction, Recursion, and Programming %I Elsevier North Holland %C New York %D 1980b

%A M. Wand %T Semantics-directed machine architecture %B ACM Symp. on Prin. of Prog. Lang. %D 1982a
%P 234-241

%A M. Wand %T Deriving target code as a representation of continuation semantics %J ACM Trans. on Prog.
Lang. and Systems %V 4 %D 1982b %P 496-517

%A M. Wand %T Different advice on structuring compilers and proving them correct %l Computer Science Dept.,
Indiana University, Bloomington %D 1982c

%A M. Wand %T Loops in combinator-based compilers %J Information and Control %V 57 %D 1983 %P
148-164

%A M. Wand %T A types-as-sets semantics for Milner-style polymorphism %B Proc. ACM Conf. on Princ. of
Prog. Lang. %C Salt Lake City, Utah %D 1984a %P 158-164

%A M. Wand %T A semantic prototyping system %B Proc. SIGPLAN ‘84 Symp. on Compiler Construction %C
Montreal %D 1984b %P 213-221

%A M. Wand %T Embedding type structure in semantics %B Proc. 12th ACM Symp. on Princ. of Prog. Lang.
%C New Orleans %D 1985a %P 1-6

%A M. Wand %T From interpreter to compiler: a representational derivation %B LNCS: Proc. Workshop on Pro-
grams as Data Objects %l Springer %C Berlin %D 1985b

%A S. Ward %T Functional domains of applicative languages %R Project MAC Report TR-136 %Il MIT %C
Cambridge, Mass. %D 1974

%A P. Wegner %T The Vienna Definition language %J ACM Computing Surveys %V 4 %D 1972a %P 5-63

%A P. Wegner %T Programming language semantics %B Formal Semantics of Programming Languages %E R.
Rustin %I Prentice-Hall %C Englewood Cliffs, N.J. %D 1972b %P 149-248

%Q vanWijngaarden, A., et. al. %T Report on the algorithmic language ALGOL68 %J Numer. Math. %V 14 %D
1969 %P 79-218

%A G. Winskel %T Events in computation %R Ph.D. thesis, Univ. of Edinburgh %C Scotland %D 1980

294 Bibliograpy

